论文标题

近距离切割:计算近乎最佳的草坪割草之旅

A Closer Cut: Computing Near-Optimal Lawn Mowing Tours

论文作者

Fekete, Sándor P., Krupke, Dominik, Perk, Michael, Rieck, Christian, Scheffer, Christian

论文摘要

对于给定的多边形区域$ p $,草坪割草问题(LMP)要求提供最短的旅行$ t $,该$ t $在$ p $中的每个点中都超出了欧几里得距离1;这相当于计算覆盖所有$ p $的单位盘切割机$ c $的最短游览。作为自然实用和理论上重要性的几何优化问题,LMP概括并结合了一些臭名昭著的困难问题,包括磁盘的最低覆盖范围,旅行推销员问题(TSPN)(TSPN)和美术馆问题(AGP)。 在本文中,我们对草坪割草问题进行了首次研究,重点是对近最佳解决方案的实际计算。我们提供了新的理论见解:最佳解决方案是具有有界数的顶点的多边形路径,可以限制直线解决方案;另一方面,最佳解决方案需要大量非理性坐标。从实际方面来说,我们提出了一种基于可证明的融合属性的原始偶型方法,该方法基于解决TSPN的特殊情况,仅限于证人集。在每次迭代中,这既建立有效的解决方案又有有效的下限,从而在其余的最优差距上绑定。正如我们在一项广泛的计算研究中所证明的那样,这使我们能够为大量具有2000个顶点的基准实例实现可证明的最佳和近乎最佳的解决方案。

For a given polygonal region $P$, the Lawn Mowing Problem (LMP) asks for a shortest tour $T$ that gets within Euclidean distance 1 of every point in $P$; this is equivalent to computing a shortest tour for a unit-disk cutter $C$ that covers all of $P$. As a geometric optimization problem of natural practical and theoretical importance, the LMP generalizes and combines several notoriously difficult problems, including minimum covering by disks, the Traveling Salesman Problem with neighborhoods (TSPN), and the Art Gallery Problem (AGP). In this paper, we conduct the first study of the Lawn Mowing Problem with a focus on practical computation of near-optimal solutions. We provide new theoretical insights: Optimal solutions are polygonal paths with a bounded number of vertices, allowing a restriction to straight-line solutions; on the other hand, there can be relatively simple instances for which optimal solutions require a large class of irrational coordinates. On the practical side, we present a primal-dual approach with provable convergence properties based on solving a special case of the TSPN restricted to witness sets. In each iteration, this establishes both a valid solution and a valid lower bound, and thereby a bound on the remaining optimality gap. As we demonstrate in an extensive computational study, this allows us to achieve provably optimal and near-optimal solutions for a large spectrum of benchmark instances with up to 2000 vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源