论文标题
部分可观测时空混沌系统的无模型预测
Steps towards prompt-based creation of virtual worlds
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Large language models trained for code generation can be applied to speaking virtual worlds into existence (creating virtual worlds). In this work we show that prompt-based methods can both accelerate in-VR level editing, as well as can become part of gameplay rather than just part of game development. As an example, we present Codex VR Pong which shows non-deterministic game mechanics using generative processes to not only create static content but also non-trivial interactions between 3D objects. This demonstration naturally leads to an integral discussion on how one would evaluate and benchmark experiences created by generative models - as there are no qualitative or quantitative metrics that apply in these scenarios. We conclude by discussing impending challenges of AI-assisted co-creation in VR.