论文标题
3D量子重力中散装状态的全息图
Holography for bulk states in 3D quantum gravity
论文作者
论文摘要
在这项工作中,我们讨论了(2+1) - 维量子重力的希尔伯特空间中状态的全息描述,生活在散装的时间切片上。我们专注于纯重力与重型旋转颗粒的指尖源。我们开发了一种公式,在该公式中,在伪层边界条件下,反反应度量的方程将带有三角洲功能来源的两个解耦的liouville方程减少。我们表明,半经典波函数和重力溶液都由通用物体确定,即球体上的经典Virasoro真空块。在这样做的过程中,我们为伪层的经典liouville理论得出了Polyakov的猜想以及存在标准。我们还讨论了在考虑使用紧凑的空间切片的封闭宇宙时如何修改其中的一些结果。
In this work we discuss the holographic description of states in the Hilbert space of (2+1)-dimensional quantum gravity, living on a time slice in the bulk. We focus on pure gravity coupled to pointlike sources for heavy spinning particles. We develop a formulation where the equations for the backreacted metric reduce to two decoupled Liouville equations with delta-function sources under pseudosphere boundary conditions. We show that both the semiclassical wavefunction and the gravity solution are determined by a universal object, namely a classical Virasoro vacuum block on the sphere. In doing so we derive a version of Polyakov's conjecture, as well as an existence criterion, for classical Liouville theory on the pseudosphere. We also discuss how some of these results are modified when considering closed universes with compact spatial slices.