论文标题
在两个维度上观察多体Fock空间动力学
Observation of many-body Fock space dynamics in two dimensions
论文作者
论文摘要
量子多体模拟提供了一种简单的方法,可以理解基本物理并与量子信息应用联系。然而,患有指数增长的希尔伯特空间规模,实际空间中几个体型探针的表征通常不足以解决诸如量子批判行为和多体定位(MBL)在更高维度中的挑战性问题。在这里,我们在实验中采用了一个新的范式,对超导量子处理器进行了新的范式,从Fock空间视图中探索了此类难以捉摸的问题:将多体系统映射到一个非常规的Anderson模型上,上面是多体状态的复杂Fock空间网络。通过观察在Fock空间中传播的波数据包和统计厄贡合奏的出现,我们揭示了一幅新的图片,以表征代表性的多体动力学:热化,定位和疤痕。此外,我们观察到一个异常增强的波数据包宽度的量子临界状态,并从最大波数据包波动中推断出临界点,该临界点在有限大小的系统中为二维MBL过渡提供了支持。我们的作品揭示了在Fock空间中探索多体物理学的新观点,展示了其在批判性和维度等有争议的MBL方面的实际应用。此外,整个协议是通用且可扩展的,为最终在未来较大的量子设备上解决了更广泛的有争议的多体问题铺平了道路。
Quantum many-body simulation provides a straightforward way to understand fundamental physics and connect with quantum information applications. However, suffering from exponentially growing Hilbert space size, characterization in terms of few-body probes in real space is often insufficient to tackle challenging problems such as quantum critical behavior and many-body localization (MBL) in higher dimensions. Here, we experimentally employ a new paradigm on a superconducting quantum processor, exploring such elusive questions from a Fock space view: mapping the many-body system onto an unconventional Anderson model on a complex Fock space network of many-body states. By observing the wave packet propagating in Fock space and the emergence of a statistical ergodic ensemble, we reveal a fresh picture for characterizing representative many-body dynamics: thermalization, localization, and scarring. In addition, we observe a quantum critical regime of anomalously enhanced wave packet width and deduce a critical point from the maximum wave packet fluctuations, which lend support for the two-dimensional MBL transition in finite-sized systems. Our work unveils a new perspective of exploring many-body physics in Fock space, demonstrating its practical applications on contentious MBL aspects such as criticality and dimensionality. Moreover, the entire protocol is universal and scalable, paving the way to finally solve a broader range of controversial many-body problems on future larger quantum devices.