论文标题

三角光学晶格中量子条纹排序的证据

Evidence for Quantum Stripe Ordering in a Triangular Optical Lattice

论文作者

Wang, Xiao-Qiong, Luo, Guang-Quan, Liu, Jin-Yu, Huang, Guan-Hua, Li, Zi-Xiang, Wu, Congjun, Hemmerich, Andreas, Xu, Zhi-Fang

论文摘要

了解密切相关的量子材料,例如高$ t_ \ textrm {c} $超导体,基于铁的超导体和扭曲的双层石墨烯系统,仍然是冷凝物质物理学中的重要挑战之一。具有超冷原子的量子模拟,特别是光学晶格(提供轨道自由度),是为这项努力提供新见解的强大工具。在这里,我们报告了$^{87} $ rb原子在三角光学晶格中填充退化$ p $ - 轨道的非常规bose-enstein冷凝物的实验实现,表现出很长的相干时间。使用飞行时间光谱,我们观察到这种状态自发打破旋转对称性,其动量光谱与理论上预测的外来条纹和环电流顺序的共存相符。就像某些与交织订单的某些紧密相关的电子系统一样,例如高$ t_ \ textrm {c} $ cuprate超导体,扭曲的双层石墨烯,以及最近发现的Kagome Superodcuctors中最近发现的手性密度波状态新证明的量子状态,尽管其能量尺度明显不同,并且骨量子统计量显着,但在超低温度下表现出多次对称性破坏。这些发现具有增强我们对管理这些复杂量子材料的基本物理学的理解。

Understanding strongly correlated quantum materials, such as high $T_\textrm{c}$ superconductors, iron-based superconductors, and twisted bilayer graphene systems, remains to be one of the outstanding challenges in condensed matter physics. Quantum simulation with ultra-cold atoms in particular optical lattices, which provide orbital degrees of freedom, is a powerful tool to contribute new insights to this endeavor. Here, we report the experimental realization of an unconventional Bose-Einstein condensate of $^{87}$Rb atoms populating degenerate $p$-orbitals in a triangular optical lattice, exhibiting remarkably long coherence times. Using time-of-flight spectroscopy, we observe that this state spontaneously breaks the rotational symmetry and its momentum spectrum agrees with the theoretically predicted coexistence of exotic stripe and loop current orders. Like certain strongly correlated electronic systems with intertwined orders, as high-$T_\textrm{c}$ cuprate superconductors, twisted bilayer graphene, and the recently discovered chiral density-wave state in kagome superconductors $\textrm{AV}_3 \textrm{Sb}_5$ (A=K, Rb, Cs), the newly demonstrated quantum state, in spite of its markedly different energy scale and the bosonic quantum statistics, exhibits multiple symmetry breakings at ultralow temperatures. These findings hold the potential to enhance our comprehension of the fundamental physics governing these intricate quantum materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源