论文标题
T线性电阻率,光导率和Planckian转运,用于周期性潜力的全息局部量子临界金属
T-linear resistivity, optical conductivity and Planckian transport for a holographic local quantum critical metal in a periodic potential
论文作者
论文摘要
高$ t_c $ cAPRATE奇怪的金属以DC抗性为符合DC抗性,该DC抗性与$ T $从超导性发作到晶体熔化温度,表明Planckian耗散寿命$τ_{\ hbar} \ simeq \ simeq \ hbar /(k_b t)$。同时,光导率在高温下停止以凹度的形式,这表明基础动力学发生了变化,这使$ t $ - 线性直流电阻不受影响。我们使用ADS/CFT对应关系,描述了强烈耦合,密度纠缠的金属来研究直流热电机传输和局部量子关键的Gubser-Rocha全息奇怪金属的光电传导性,在存在的情况下是lattice势,是与实验相比的主要候选者。我们发现,对于一系列晶格强度和波形,即使它在不同的耗散状态之间过渡,DC的抗性在$ t $中是线性的。在弱晶格电势下,光导率随温度从磨碎的形式升高到以中IIR共振而不改变DC传输的特征的不良金属的变化,类似于Cuprate奇怪的金属中的传输。由于umklapp流体动力学的结果,可以理解这个中期峰及其温度演化:在存在晶格的情况下,流体动力扰动是BLOCH模式。在强晶格电位下,在动量保护不再在运输中发挥作用的情况下,实现了不一致的金属。在这种制度中,可以通过源自普遍微观混乱的普朗克耗散来解释热扩散率,类似于具有强均匀动量弛豫的全息金属。电荷扩散率并未提交这种混乱的解释,即使持续的线性线性电阻率饱和到明显的通用斜率,在数值上等于Planckian速率。
High $T_c$ cuprate strange metals are noted for a DC-resistivity that scales linearly with $T$ from the onset of superconductivity to the crystal melting temperature, indicative of a Planckian dissipation life time $τ_{\hbar}\simeq \hbar /(k_B T)$. At the same time, the optical conductivity ceases to be of Drude form at high temperatures, suggesting a change of the underlying dynamics that surprisingly leaves the $T$-linear DC-resistivity unaffected. We use the AdS/CFT correspondence that describes strongly coupled, densely entangled metals to study DC thermo-electrical transport and the optical conductivities of the local quantum critical Gubser-Rocha holographic strange metal in the presence of a lattice potential, a prime candidate to compare with experiment. We find that the DC-resistivity is linear in $T$ at low temperatures for a range of lattice strengths and wavevectors, even as it transitions between different dissipative regimes. At weak lattice potential the optical conductivity evolves with increasing temperature from a Drude form to a bad-metal characterized by a mid-IR resonance without changing the DC transport, similar to that seen in cuprate strange metals. This mid-IR peak and its temperature evolution can be understood as a consequence of Umklapp hydrodynamics: hydrodynamic perturbations are Bloch modes in the presence of a lattice. At strong lattice potential an incoherent metal is realized instead where momentum conservation no longer plays a role in transport. In this regime the thermal diffusivity can be explained by Planckian dissipation originating in universal microscopic chaos, similar to holographic metals with strong homogeneous momentum relaxation. The charge diffusivity does not submit to this chaos explanation, even though the continuing linear-in-$T$ DC resistivity saturates to an apparent universal slope, numerically equal to a Planckian rate.