论文标题

相关双变量二进制观察的等效测试

Equivalence Test for Correlated Bivariate Binary Observation

论文作者

Huang, Guanghui

论文摘要

在零假设下,在任何指定的相关系数上,正响应的边际概率是对称的,并且不一致的概率与正响应概率也对称。不一致观察的边际分布功能在单调上随着不一致概率的增加而单调减少。分布函数的最小点取决于相关系数确定。基于两个不一致的观察的相关分布,共同的置信区域,这是两个不一致的变量测试,这些置信度是指出,该置信度与脉动测试相等,该测试是指出同等分布的盘式测试。指定的显着性水平,McNemar测试的接受区与不同样本量的边距测试的相应域进行了比较。两种接受区域的形状相似,只是边缘检验的接受区比McNemar检验的相应区域大。 McNemar测试的大小和功率与不同样本量的特定显着性水平相比,与边距测试的相应值相比。两种方法中I类误差的风险都在较大的样本量或较小的相关系数中增加,以及保证金测试正确接受的参数范围范围明显大于McNemar测试的相应范围。两个现实世界的示例都在MCNEMAR测试和MARGAN测试中了解了如何了解MACNEMAR测试的不同决策,并在此处进行了范围的数据。

Under the null hypothesis, the marginal probability of the positive response is symmetric at any specified correlated coefficient, and the discordance probability is also symmetric to the positive response probability. The marginal distribution function of the discordant observation is monotonically decreasing with the increase of the discordance probability.And the minimum point of the distribution function is determined by the correlated coefficient.Based on the joint distribution of the two discordant observations, a confidence region of the possible values of two discordant variables is proposed, which deduces an equivalence test with the marginal distribution of the discordance observation, called the margin test.For a specified level of significance, the acceptance region of the McNemar test compares to the corresponding domain of the margin test for different sample sizes. The shape of the two kinds of acceptance regions is similar, except that the acceptance region of the margin test is slightly larger than the corresponding region of the McNemar test. The size and power of the McNemar test compare to the corresponding values of the margin test at a specified level of significance for different sample sizes. The risk of the type I error in both methods increases for a larger sample size or a smaller correlation coefficient, and the range of parameters where the margin test correctly accepts the null hypothesis is significantly larger than the corresponding range of the McNemar test.Two real-world examples demonstrate how to understand the different decisions from the McNemar test and the margin test, where the observed data is on the boundary of the rejection regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源