论文标题
改善基于不确定性的医疗图像分割的分布外检测
Improving Uncertainty-based Out-of-Distribution Detection for Medical Image Segmentation
论文作者
论文摘要
深度学习模型很容易被训练过程中未见的输入图像的变化所打扰,从而导致不可预测的行为。在医学图像分析的背景下,这种分布(OOD)图像代表了一个重大挑战,在医学图像分析的背景下,可能的异常范围非常宽,包括人工制品,看不见的病理或不同的成像协议。在这项工作中,我们评估了各种不确定性框架,以在多发性硬化病变细分的背景下检测OOD输入。通过实施一项全面的评估方案,包括14种各种性质和力量的OOD来源,我们表明依赖于二进制细分模型的预测不确定性的方法通常在检测出偏外的输入方面失败了。相反,学会将解剖标签与病变旁边分割高度提高了检测OOD输入的能力。
Deep Learning models are easily disturbed by variations in the input images that were not seen during training, resulting in unpredictable behaviours. Such Out-of-Distribution (OOD) images represent a significant challenge in the context of medical image analysis, where the range of possible abnormalities is extremely wide, including artifacts, unseen pathologies, or different imaging protocols. In this work, we evaluate various uncertainty frameworks to detect OOD inputs in the context of Multiple Sclerosis lesions segmentation. By implementing a comprehensive evaluation scheme including 14 sources of OOD of various nature and strength, we show that methods relying on the predictive uncertainty of binary segmentation models often fails in detecting outlying inputs. On the contrary, learning to segment anatomical labels alongside lesions highly improves the ability to detect OOD inputs.