论文标题

使用合成相关扩散成像增强对乳腺癌的临床支持

Enhancing Clinical Support for Breast Cancer with Deep Learning Models using Synthetic Correlated Diffusion Imaging

论文作者

Tai, Chi-en Amy, Gunraj, Hayden, Hodzic, Nedim, Flanagan, Nic, Sabri, Ali, Wong, Alexander

论文摘要

乳腺癌是加拿大和美国女性中第二常见的癌症类型,占所有新女性癌症病例的25%以上。因此,在改善对乳腺癌的筛查和临床支持方面,已经进行了巨大的研究和进展。在本文中,我们使用新引入的磁共振成像(MRI)模式(称为合成相关扩散成像(CDI $^S $))研究了通过深度学习模型来增强对乳腺癌的临床支持。更具体地说,我们利用体积的卷积神经网络从治疗前队列中学习体积深度放射线特征,并基于学习和后处理后响应预测的学习特征来构建预测变量。作为在深度学习视角以临床决策支持的方面学习CDI $^S $中心序列的第一项研究,我们使用ACRIN-6698研究对使用Gold-Standard Imaging Modalities学习的方法进行了评估。我们发现,所提出的方法可以为等级和治疗后反应预测获得更好的性能,因此可能是帮助肿瘤学家改善患者治疗建议的有用工具。随后,可以进一步扩展到CDI $^s $在癌症领域中的其他应用,以进一步改善临床支持。

Breast cancer is the second most common type of cancer in women in Canada and the United States, representing over 25\% of all new female cancer cases. As such, there has been immense research and progress on improving screening and clinical support for breast cancer. In this paper, we investigate enhancing clinical support for breast cancer with deep learning models using a newly introduced magnetic resonance imaging (MRI) modality called synthetic correlated diffusion imaging (CDI$^s$). More specifically, we leverage a volumetric convolutional neural network to learn volumetric deep radiomic features from a pre-treatment cohort and construct a predictor based on the learnt features for grade and post-treatment response prediction. As the first study to learn CDI$^s$-centric radiomic sequences within a deep learning perspective for clinical decision support, we evaluated the proposed approach using the ACRIN-6698 study against those learnt using gold-standard imaging modalities. We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction and thus may be a useful tool to aid oncologists in improving recommendation of treatment of patients. Subsequently, the approach to leverage volumetric deep radiomic features for breast cancer can be further extended to other applications of CDI$^s$ in the cancer domain to further improve clinical support.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源