论文标题

基于BERT的卷积和复发性神经网络的组合用于印尼情感分析

BERT-Based Combination of Convolutional and Recurrent Neural Network for Indonesian Sentiment Analysis

论文作者

Murfi, Hendri, Syamsyuriani, Gowandi, Theresia, Ardaneswari, Gianinna, Nurrohmah, Siti

论文摘要

情感分析是对文本中观点和情感的计算研究。深度学习是一种当前在各种应用领域(包括情感分析)中生产最新的模型。许多研究人员正在使用结合不同深度学习模型的混合方法,并已被证明可以改善模型性能。在情感分析中,文本数据中的输入首先转换为数值表示。用于获得文本表示的标准方法是微型嵌入方法。但是,此方法不关注句子中每个单词的上下文。因此,来自变压器(BERT)模型的双向编码器表示,用于根据句子中单词的上下文和位置获取文本表示。这项研究扩展了使用BERT代表来进行印尼情感分析的先前的混合深度学习。我们的模拟表明,BERT表示可以提高所有混合体系结构的准确性。基于BERT的LSTM-CNN也比其他基于BERT的混合体架构的精度略好。

Sentiment analysis is the computational study of opinions and emotions ex-pressed in text. Deep learning is a model that is currently producing state-of-the-art in various application domains, including sentiment analysis. Many researchers are using a hybrid approach that combines different deep learning models and has been shown to improve model performance. In sentiment analysis, input in text data is first converted into a numerical representation. The standard method used to obtain a text representation is the fine-tuned embedding method. However, this method does not pay attention to each word's context in the sentence. Therefore, the Bidirectional Encoder Representation from Transformer (BERT) model is used to obtain text representations based on the context and position of words in sentences. This research extends the previous hybrid deep learning using BERT representation for Indonesian sentiment analysis. Our simulation shows that the BERT representation improves the accuracies of all hybrid architectures. The BERT-based LSTM-CNN also reaches slightly better accuracies than other BERT-based hybrid architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源