论文标题
生成的对抗网络,用于在MR图像上弱监督的生成和评估脑肿瘤分割
Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images
论文作者
论文摘要
识别异常的利益区域(ROI)的分割是医学成像中的主要问题。使用机器学习来解决此问题,通常需要手动注释的地面真相细分,要求放射科医生的大量时间和资源。这项工作提出了一种弱监督的方法,该方法利用了二进制图像级标签,这些标签更容易获取,以有效地分割2D磁共振图像中的异常,而无需地面真相注释。我们训练一个生成的对抗网络(GAN),该网络将癌图像转换为健康的变体,该变体与定位种子一起用作先验,以产生改善的弱监督分段。非癌性变体也可以用来以弱监督的方式评估分割,从而允许确定最有效的分割,然后应用于下游临床分类任务。在多模式的脑肿瘤分割(BRAT)2020数据集上,我们提出的方法生成并确定了实现83.91%的测试骰子系数的分割。使用这些分割进行病理分类的结果,测试AUC为93.32%,可与使用真实分割时达到的95.80%的测试AUC相当。
Segmentation of regions of interest (ROIs) for identifying abnormalities is a leading problem in medical imaging. Using machine learning for this problem generally requires manually annotated ground-truth segmentations, demanding extensive time and resources from radiologists. This work presents a weakly supervised approach that utilizes binary image-level labels, which are much simpler to acquire, to effectively segment anomalies in 2D magnetic resonance images without ground truth annotations. We train a generative adversarial network (GAN) that converts cancerous images to healthy variants, which are used along with localization seeds as priors to generate improved weakly supervised segmentations. The non-cancerous variants can also be used to evaluate the segmentations in a weakly supervised fashion, which allows for the most effective segmentations to be identified and then applied to downstream clinical classification tasks. On the Multimodal Brain Tumor Segmentation (BraTS) 2020 dataset, our proposed method generates and identifies segmentations that achieve test Dice coefficients of 83.91%. Using these segmentations for pathology classification results with a test AUC of 93.32% which is comparable to the test AUC of 95.80% achieved when using true segmentations.