论文标题

在统计估计和反问题中,对平均值和Cramér速率函数的最大熵:属性,模型和算法

Maximum Entropy on the Mean and the Cramér Rate Function in Statistical Estimation and Inverse Problems: Properties, Models, and Algorithms

论文作者

Vaisbourd, Yakov, Choksi, Rustum, Goodwin, Ariel, Hoheisel, Tim, Schönlieb, Carola-Bibiane

论文摘要

我们探索一种统计估计方法,称为平均值(MEM)上的最大熵,该方法基于信息驱动的标准,该标准量化了给定点具有参考先验概率度量的符合性。这种方法的核心是mem函数,这是kullback-leibler差异在线性约束上的部分最小化。在许多情况下,众所周知,此函数允许更简单的表示(称为cramér速率函数)。通过与概率分布的指数家族的联系,我们研究了该表示形式所具有的一般条件。然后,我们解决了相关的MEM估计器如何产生广泛的基于MEM的正规化线性模型来解决反问题。最后,我们提出了一个算法框架,以基于Bregman近端梯度方法有效地解决这些问题,以及用于常用的参考分布的近端操作员。该文章通过用于实验和探索应用程序中MEM方法的软件包补充。

We explore a method of statistical estimation called Maximum Entropy on the Mean (MEM) which is based on an information-driven criterion that quantifies the compliance of a given point with a reference prior probability measure. At the core of this approach lies the MEM function which is a partial minimization of the Kullback-Leibler divergence over a linear constraint. In many cases, it is known that this function admits a simpler representation (known as the Cramér rate function). Via the connection to exponential families of probability distributions, we study general conditions under which this representation holds. We then address how the associated MEM estimator gives rise to a wide class of MEM-based regularized linear models for solving inverse problems. Finally, we propose an algorithmic framework to solve these problems efficiently based on the Bregman proximal gradient method, alongside proximal operators for commonly used reference distributions. The article is complemented by a software package for experimentation and exploration of the MEM approach in applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源