论文标题
Etude des(n+1)-tissus de curbes en dimension n
Etude des (n+1)-tissus de courbes en dimension n
论文作者
论文摘要
对于$(n+1)$ - 曲线的网络中的网络$ n $维歧管,我们首先定义了第二个尺寸的众所周知的blaschke曲率的概括,如果网络消失了,如果网络消失了,这是最大的等级。但是,与第二等级的尺寸相反,所有等级第一均为局部同构,我们证明,有许多类别的同构象构象为4-胜地的细菌,这是第三等级的曲线:我们提供了一个程序,以构建所有这些阶级,以构建这些类别的范围,并允许这些阶层的范围允许这些范围的范围,以使这些网络构成较高的范围,以造成这些阶级的范围,以造成这些范围的挑战。
For $(n+1)$-webs by curves in an ambiant $n$-dimensional manifold, we first define a generalization of the well known Blaschke curvature of the dimension two, which vanishes iff the web has the maximum possible rank which is one. But, contrary to the dimension two where all 3-webs of rank one are locally isomorphic, we prove that there are infinitely many classes of isomorphism for germs of 4-webs by curves of rank one in the dimension three : we provide a procedure for building all of them, up to isomorphism, and give examples of invariants of these classes allowing in particular to distinguish the so-called quadrilateral webs among them.