论文标题

注意物理相互作用的优势:粒子物理实验的基于变压器和基于图的事件分类

Attention to the strengths of physical interactions: Transformer and graph-based event classification for particle physics experiments

论文作者

Builtjes, Luc, Caron, Sascha, Moskvitina, Polina, Nellist, Clara, de Austri, Roberto Ruiz, Verheyen, Rob, Zhang, Zhongyi

论文摘要

粒子物理学的主要任务是测量稀有信号过程。即使是在固定信号效率下的背景排斥反应的适度改进也可以显着提高测量灵敏度。这项工作以其他将物理对称性融入神经网络的人的先前研究为基础,扩展了这些想法,以包括其他物理动机的特征。具体而言,我们将依赖能量的粒子相互作用强度引入了源自前阶SM预测的粒子相互作用强度,并将其引入现代深度学习体系结构,包括变压器体系结构(粒子变压器)和图神经网络(粒子网)。这些相互作用强度(表示为SM相互作用矩阵)被整合到注意矩阵(变形金刚)和边缘(图)中。我们在事件分类中的结果表明,所有物理动机功能的集成使背景拒绝提高了$ 10 \%-40 \%$,而基线型号则增加了,由于SM交互矩阵,其额外增益高达$ 9 \%$。这项研究还提供了迄今为止事件分类器的最广泛比较之一,以证明各种架构在此任务中的执行方式。简化的统计分析表明,与图网络基线相比,这些增强架构的信号意义有了显着改善。

A major task in particle physics is the measurement of rare signal processes. Even modest improvements in background rejection, at a fixed signal efficiency, can significantly enhance the measurement sensitivity. Building on prior research by others that incorporated physical symmetries into neural networks, this work extends those ideas to include additional physics-motivated features. Specifically, we introduce energy-dependent particle interaction strengths, derived from leading-order SM predictions, into modern deep learning architectures, including Transformer Architectures (Particle Transformer), and Graph Neural Networks (Particle Net). These interaction strengths, represented as the SM interaction matrix, are incorporated into the attention matrix (transformers) and edges (graphs). Our results in event classification show that the integration of all physics-motivated features improves background rejection by $10\%-40\%$ over baseline models, with an additional gain of up to $9\%$ due to the SM interaction matrix. This study also provides one of the broadest comparisons of event classifiers to date, demonstrating how various architectures perform across this task. A simplified statistical analysis demonstrates that these enhanced architectures yield significant improvements in signal significance compared to a graph network baseline.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源