论文标题

物理学以外的标准模型具有未来的X射线观测值:带有$ achena $和$ axis $的非常光轴的颗粒上的预计约束

Physics Beyond the Standard Model with Future X-ray Observatories: Projected Constraints on Very-Light Axion-Like Particles with $Athena$ and $AXIS$

论文作者

Sisk-Reynés, Júlia, Reynolds, Christopher S., Parker, Michael L., Matthews, James H., Marsh, M. C. David

论文摘要

轴状颗粒(ALP)是粒子物理学标准模型的良好动机扩展,并且是某些字符串理论的一般预测。 X射线观测到由丰富星系群托管的明亮活跃的银河核(AGN)是非常轻的阿尔卑斯山的出色探针,其中质量为$ \ mathrm {log}(M_ \ Mathrm {a}/\ Mathrm {a}/\ mathrm {ev} {ev})<-12.0 $。我们评估了未来X射线观测器的潜力,尤其是$ athena $和拟议的$ axis $,以通过观察集群托管的AGN来限制阿尔卑斯山,并将NGC 1275在珀尔索斯集群中作为我们的示例。假设有完美的仪器校准知识,我们表明,$ Athena $的NGC 1275的适度暴露(200 k)允许我们排除所有Photon-Alp耦合$ G_ \ Mathrm {Aγ}> 6.3 \ 6.3 \ times 10^{ - 14} { - 14} { - 14} \ evevia $ conlon \ et \ al。 \(2018)$,代表比当前限制的10倍。然后,我们开始通过应用标准的$现金$ libilesoperuare来评估现实校准不确定性对$ ATHENA $投影的影响,从而显示出对$ G_ \ MathRM {Aγ} $削弱10倍的预计约束(返回到当前最敏感的约束)。但是,我们展示了深层神经网络的使用如何消除由仪器错误校准引起的能量依赖性特征以及光子 - ALP混合引起的能量,从而使我们能够恢复对ALP物理学的大部分敏感性。在我们明确的演示中,应用机器学习使我们能够排除$ g_ \ mathrm {aγ}> 2.0 \ times 10^{ - 13} \ {\ mathrm {\ mathrm {gev}}^{ - 1} $,补充了下一代alp darkenation alp darkenter alp darkenter alp birefrent cavity aelpts sepless的约束,以获取非常lightpity searpes searpes。最后,我们表明,NGC 1275的200秒$ axis $/轴上观察将使当前对非常轻的阿尔卑斯山的最佳约束增加3倍。

Axion-Like Particles (ALPs) are well-motivated extensions of the Standard Model of Particle Physics and a generic prediction of some string theories. X-ray observations of bright Active Galactic Nuclei (AGN) hosted by rich clusters of galaxies are excellent probes of very-light ALPs, with masses $\mathrm{log}(m_\mathrm{a}/\mathrm{eV}) < -12.0$. We evaluate the potential of future X-ray observatories, particularly $Athena$ and the proposed $AXIS$, to constrain ALPs via observations of cluster-hosted AGN, taking NGC 1275 in the Perseus cluster as our exemplar. Assuming perfect knowledge of instrument calibration, we show that a modest exposure (200-ks) of NGC 1275 by $Athena$ permits us to exclude all photon-ALP couplings $g_\mathrm{aγ} > 6.3 \times 10^{-14} \ {\mathrm{GeV}}^{-1}$ at the 95% level, as previously shown by $Conlon \ et \ al. \ (2018)$, representing a factor of 10 improvement over current limits. We then proceed to assess the impact of realistic calibration uncertainties on the $Athena$ projection by applying a standard $Cash$ likelihood procedure, showing the projected constraints on $g_\mathrm{aγ}$ weaken by a factor of 10 (back to the current most sensitive constraints). However, we show how the use of a deep neural network can disentangle the energy-dependent features induced by instrumental miscalibration and those induced by photon-ALP mixing, allowing us to recover most of the sensitivity to the ALP physics. In our explicit demonstration, the machine learning applied allows us to exclude $g_\mathrm{aγ} > 2.0 \times 10^{-13} \ {\mathrm{GeV}}^{-1}$, complementing the projected constraints of next-generation ALP dark matter birefringent cavity searches for very-light ALPs. Finally, we show that a 200-ks $AXIS$/on-axis observation of NGC 1275 will tighten the current best constraints on very-light ALPs by a factor of 3.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源