论文标题
Gabidulin代码的GALOIS船体尺寸
Galois Hull Dimensions of Gabidulin Codes
论文作者
论文摘要
对于Prime Power $ Q $,整数$ M $和$ 0 \ leq E \ leq M-1 $,我们研究Gabidulin codes $ g_k(\boldsymbolα)的$ e $ -galois hull hull dimension $ g_k(\boldsymbolα)长度$ m $的$ m $和dimension $ k $ k $ a $ k $ ive $ k $ a $ k $ ive $ \ nathbb {f} $ {f} $}使用$ \ mathbb {f} _ {q^m} $的$ \boldsymbolα$在$ \ mathbb {f} _q $上,我们首先明确计算$ g_k(\boldsymbolα)$的船体维度。然后将提供$ g_k(\boldsymbolα)$的必要条件,即线性互补双(LCD),自动和自dual。我们证明存在$ e $ -galois(其中$ e = \ frac {m} {2} $)什至$ q $的长度$ m $的自dual gabidulin代码,这与已知的事实形成鲜明对比:欧几里得自dual gabidulin codes在$ q $中都不存在。作为一个应用程序,我们构建了两类纠缠的量子误差校正代码(EAQECC),其参数与在这种情况下的已知代码相比具有更大的灵活性。
For a prime power $q$, an integer $m$ and $0\leq e\leq m-1$ we study the $e$-Galois hull dimension of Gabidulin codes $G_k(\boldsymbolα)$ of length $m$ and dimension $k$ over $\mathbb{F}_{q^m}$. Using a self-dual basis $\boldsymbolα$ of $\mathbb{F}_{q^m}$ over $\mathbb{F}_q$, we first explicitly compute the hull dimension of $G_k(\boldsymbolα)$. Then a necessary and sufficient condition of $G_k(\boldsymbolα)$ to be linear complementary dual (LCD), self-orthogonal and self-dual will be provided. We prove the existence of $e$-Galois (where $e=\frac{m}{2}$) self-dual Gabidulin codes of length $m$ for even $q$, which is in contrast to the known fact that Euclidean self-dual Gabidulin codes do not exist for even $q$. As an application, we construct two classes of entangled-assisted quantum error-correcting codes (EAQECCs) whose parameters have more flexibility compared to known codes in this context.