论文标题

固体中扩散的数学理论:依赖时间的第一种边界条件

The Mathematical Theory Of Diffusion In Solids: Time Dependent First Kind Boundary Conditions

论文作者

Macrelli, Guglielmo

论文摘要

在提出表面饱和模型的情况下,提出了表面上的时间变量函数,提出了时间变量第一类边界条件的单维扩散方程的新解决方案。该溶液可能有助于处理扩散过程的处理,在这种扩散过程中,扩散的总时间与固体表面所花费的时间相媲美,以使实现外部源提供的扩散元件与通过扩散动力学机制内部传输的扩散元件之间的扩散元件之间的动力平衡。提出并讨论了用于恒定扩散系数的工作示例。

A new solution to the mono-dimensional diffusion equation for time-variable first kind boundary condition is presented where the time-variable function at the surface is derived proposing a surface saturation model. This solution may be helpful in the treatment of diffusion processes where the overall time of diffusion is comparable with the time taken by the surface of the solid body to saturate achieving a dynamical equilibrium between the diffusing elements supplied by the external source and the ones transferred internally through the diffusion kinetic mechanisms. Worked examples for constant diffusion coefficient are presented and discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源