论文标题
磁化通过抗铁磁状态的逆转
Magnetization reversal through an antiferromagnetic state
论文作者
论文摘要
铁磁和铁磁体中的磁化逆转是非平衡过程的众所周知的原型,其中相对磁化域的体积分数在强制磁场上变化并完全补偿。在这里,我们报告了磁化反转的根本新途径,该途径是由抗磁性状态介导的。因此,在强制性场上实现了磁化的原子尺度补偿,而不是在规范反转过程中取消介质或宏观域。我们在Zn掺杂的极性磁铁Fe $ _2 $ mo $ _3 $ o $ $ _8 $上证明了这种不寻常的磁化逆转。隐藏在常规的铁磁滞后环后,抗铁磁阶段在强制场上的出人意料出现,通过电力极化的磁场依赖性在电场依赖性中揭示。此外,在磁化逆转下,我们的THZ光谱研究揭示了仅在原始的抗磁磁状态下存在的磁化模式的重新出现。根据我们的显微镜计算,这种异常的过程受主导的内轴耦合,强大的轴轴反相和自旋波动的控制,这导致了铁磁性和抗磁磁相之间的复杂相互作用。这种抗晶格介导的逆转过程为磁化控制提供了新的概念,并且也可能出现其他铁疗法。
Magnetization reversal in ferro- and ferrimagnets is a well-known archetype of non-equilibrium processes, where the volume fractions of the oppositely magnetized domains vary and perfectly compensate each other at the coercive magnetic field. Here, we report on a fundamentally new pathway for magnetization reversal that is mediated by an antiferromagnetic state. Consequently, an atomic-scale compensation of the magnetization is realized at the coercive field, instead of the mesoscopic or macroscopic domain cancellation in canonical reversal processes. We demonstrate this unusual magnetization reversal on the Zn-doped polar magnet Fe$_2$Mo$_3$O$_8$. Hidden behind the conventional ferrimagnetic hysteresis loop, the surprising emergence of the antiferromagnetic phase at the coercive fields is disclosed by a sharp peak in the field-dependence of the electric polarization. In addition, at the magnetization reversal our THz spectroscopy studies reveal the reappearance of the magnon mode that is only present in the pristine antiferromagnetic state. According to our microscopic calculations, this unusual process is governed by the dominant intralayer coupling, strong easy-axis anisotropy and spin fluctuations, which result in a complex interplay between the ferrimagnetic and antiferromagnetic phases. Such antiferro-state-mediated reversal processes offer novel concepts for magnetization control, and may also emerge for other ferroic orders.