论文标题

拓扑外射和系数

Topological exodromy with coefficients

论文作者

Porta, Mauro, Teyssier, Jean-Baptiste

论文摘要

我们以几种方式提高了Macpherson,Treumann和Lurie的出射术等效性:首先,我们允许分层的空间,这些空间具有局部弱收缩的地层,而不是在局部形状的局部,我们删除了所有Noetherianity假设,我们考虑了更一般的系数(例如,紧凑的组装或稳定稳定或稳定的$ \ infty $ \ fty $ -CATERTION)。此外,我们的方法表明,出埃及等效性对于分层空间的每个形态起作用。作为一种应用,我们在适当的有限假设下构建了一个较高的ARTIN衍生出的超构造性超移轴的堆栈,并证明每个变态函数都会产生一个开放的反向性超轨的开放式替代。使用衍生的结构,我们提供了一个新的同一个同胞厅代数的构建,从而推广了Schiffmann-Vasserot,Davison和Mistry过去研究的角色品种。

We improve the exodromy equivalence of MacPherson, Treumann and Lurie in several ways: first, we allow stratified spaces that have locally weakly contractible strata, rather than being locally of singular shape, we remove all noetherianity assumptions and we consider more general coefficients (e.g. compactly assembled or stable presentable $\infty$-categories). Furthermore, our approach shows that the exodromy equivalence is functorial for every morphism of stratified spaces. As an application, we construct, under suitable finiteness assumptions, a higher Artin derived stack of hyperconstructible hypersheaves and prove that every perversity function gives rise to an open substack of perverse hypersheaves. Using the derived structure, we provide the construction of a new cohomological Hall algebra, generalizing the ones of character varieties studied in the past by Schiffmann-Vasserot, Davison and Mistry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源