论文标题
图形神经网络具有自适应读数
Graph Neural Networks with Adaptive Readouts
论文作者
论文摘要
通过读取函数将节点特征的有效聚合到图形表示中是涉及图神经网络的许多学习任务的重要步骤。通常,读数是设计的简单且非自适应功能,使得由此产生的假设空间是置换不变的。深度集的先前工作表明,此类读数可能需要复杂的节点嵌入,这可能很难通过标准邻域聚合方案学习。在此激励的情况下,我们研究了神经网络给出的自适应读数的潜力,这些读数不一定会引起置换不变的假设空间。我们认为,在某些问题中,例如通常以规范形式呈现分子的结合亲和力预测,可能有可能放宽假设空间的置换不变性的约束,并通过使用自适应读取功能来学习更有效的亲和力模型。我们的经验结果证明了神经读数对跨越不同领域和图形特征的40多个数据集的有效性。此外,我们观察到相对于邻里聚合迭代的数量和不同的卷积运算符的标准读数(即,总和,最大和平均值)的一致改进。
An effective aggregation of node features into a graph-level representation via readout functions is an essential step in numerous learning tasks involving graph neural networks. Typically, readouts are simple and non-adaptive functions designed such that the resulting hypothesis space is permutation invariant. Prior work on deep sets indicates that such readouts might require complex node embeddings that can be difficult to learn via standard neighborhood aggregation schemes. Motivated by this, we investigate the potential of adaptive readouts given by neural networks that do not necessarily give rise to permutation invariant hypothesis spaces. We argue that in some problems such as binding affinity prediction where molecules are typically presented in a canonical form it might be possible to relax the constraints on permutation invariance of the hypothesis space and learn a more effective model of the affinity by employing an adaptive readout function. Our empirical results demonstrate the effectiveness of neural readouts on more than 40 datasets spanning different domains and graph characteristics. Moreover, we observe a consistent improvement over standard readouts (i.e., sum, max, and mean) relative to the number of neighborhood aggregation iterations and different convolutional operators.