论文标题

DEEPDC:作为感知图像质量评估器的深距离相关

DeepDC: Deep Distance Correlation as a Perceptual Image Quality Evaluator

论文作者

Zhu, Hanwei, Chen, Baoliang, Zhu, Lingyu, Wang, Shiqi, Lin, Weisi

论文摘要

Imagenet预先训练的深神经网络(DNNS)显示出有效的图像质量评估(IQA)模型的显着转移性。在先前的研究中,这种显着的副产品经常被确定为新兴属性。在这项工作中,我们将这种能力归因于固有纹理敏感的特征,该特征使用纹理特征对图像进行分类。我们完全利用这种特征来开发一种新型的全参考IQA(FR-IQA)模型,仅基于预先训练的DNN特征。具体而言,我们计算距离相关性,这是深度特征域中的参考图像和扭曲的图像之间的高度有希望但相对不受欢迎的统计量。此外,距离相关性量化了线性和非线性特征关系,远远超出了特征空间中广泛使用的一阶和二阶统计。我们进行了全面的实验,以证明在五个标准IQA数据集,一个感知相似性数据集,两个纹理相似性数据集和一个几何转换数据集上,提出的质量模型的优越性。此外,我们通过将模型视为神经样式转移(NST)的样式损失函数,优化了提出的模型,以生成各种纹理模式。广泛的实验表明,所提出的纹理合成和NST方法获得了最佳的定量和定性结果。我们在https://github.com/h4nwei/deepdc上发布代码。

ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models. Such a remarkable byproduct has often been identified as an emergent property in previous studies. In this work, we attribute such capability to the intrinsic texture-sensitive characteristic that classifies images using texture features. We fully exploit this characteristic to develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features. Specifically, we compute the distance correlation, a highly promising yet relatively under-investigated statistic, between reference and distorted images in the deep feature domain. In addition, the distance correlation quantifies both linear and nonlinear feature relationships, which is far beyond the widely used first-order and second-order statistics in the feature space. We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets, one perceptual similarity dataset, two texture similarity datasets, and one geometric transformation dataset. Moreover, we optimize the proposed model to generate a broad spectrum of texture patterns, by treating the model as the style loss function for neural style transfer (NST). Extensive experiments demonstrate that the proposed texture synthesis and NST methods achieve the best quantitative and qualitative results. We release our code at https://github.com/h4nwei/DeepDC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源