论文标题

Max-Flow/min-CUT系统中安全游戏的概率边缘分解

Decomposition of Probability Marginals for Security Games in Max-Flow/Min-Cut Systems

论文作者

Matuschke, Jannik

论文摘要

给定一个设置系统$(e,\ nathcal {p})$,$ρ\ in [0,1]^e $和$π\ in [0,1]^{\ Mathcal {p}} $,我们的目标是为随机的$ s \ subsetee $ $ \ operation $ \ operate $ \ pr pr in In than of than of In In In In In In In。 \在e $和$ \ operatatorName {pr} [p \ cap s \ neq \ emptyset] \ geq qou_p $ for in \ mathcal {p} $中的所有$ p \。我们扩展了Dahan,Amin和Jaillet(MOR 2022)的结果,他们研究了这一问题,该问题是由有指示的无环图(DAG)中的安全游戏激励的。 我们专注于设置,其中$π$是仿射形式的$π_p= 1 - \ sum_ {e \ in p}μ_e$ for $μ\ in [0,1]^e $。存在所需分布的必要条件是$ \ sum_ {e \ in p}ρ_e\ geqπ_p$ in \ mathcal {p} $中的所有$ p \ geqπ_p$。我们表明,只有$ \ nathcal {p} $具有弱的max-flow/min-cut属性,就足够了。我们进一步提供了一种有效的组合算法,用于在特殊情况下计算相应的分布,其中$(e,\ mathcal {p})$是一个抽象网络。结果,Dahan等人的安全游戏的平衡。可以在各种设置(包括任意挖掘物)中有效计算。 作为我们算法的子例程,我们提供了一种用于计算抽象网络中最短路径的组合算法,部分回答了麦考密克(Soda 1996)的一个开放问题。我们进一步表明,Dahan等人提出的保护法。对于需求,$π$ in DAGS可以减少到上述仿射要求的设置。

Given a set system $(E, \mathcal{P})$ with $ρ\in [0, 1]^E$ and $π\in [0,1]^{ \mathcal{P}}$, our goal is to find a probability distribution for a random set $S \subseteq E$ such that $\operatorname{Pr}[e \in S] = ρ_e$ for all $e \in E$ and $\operatorname{Pr}[P \cap S \neq \emptyset] \geq π_P$ for all $P \in \mathcal{P}$. We extend the results of Dahan, Amin, and Jaillet (MOR 2022) who studied this problem motivated by a security game in a directed acyclic graph (DAG). We focus on the setting where $π$ is of the affine form $π_P = 1 - \sum_{e \in P} μ_e$ for $μ\in [0, 1]^E$. A necessary condition for the existence of the desired distribution is that $\sum_{e \in P} ρ_e \geq π_P$ for all $P \in \mathcal{P}$. We show that this condition is sufficient if and only if $\mathcal{P}$ has the weak max-flow/min-cut property. We further provide an efficient combinatorial algorithm for computing the corresponding distribution in the special case where $(E, \mathcal{P})$ is an abstract network. As a consequence, equilibria for the security game by Dahan et al. can be efficiently computed in a wide variety of settings (including arbitrary digraphs). As a subroutine of our algorithm, we provide a combinatorial algorithm for computing shortest paths in abstract networks, partially answering an open question by McCormick (SODA 1996). We further show that a conservation law proposed by Dahan et al. for the requirement vector $π$ in DAGs can be reduced to the setting of affine requirements described above.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源