论文标题
3DFILL:通过自我监督的3D图像对齐方式对参考引导的图像介绍
3DFill:Reference-guided Image Inpainting by Self-supervised 3D Image Alignment
论文作者
论文摘要
大多数现有的图像介绍算法都是基于单个视图,与大孔或包含复杂场景的孔斗争。某些参考引导的算法通过参考另一个观点图像并使用2D图像对齐方式来填充孔。由于相机成像过程,简单的2D转换很难获得令人满意的结果。在本文中,我们提出了3Dfill,这是一种简单有效的参考引导图像插图的方法。给定具有任意孔区域和参考图像的目标图像从另一个角度使用,3DFILL首先通过两阶段方法对齐两个图像:3D投影 + 2D变换,其结果比2D图像对齐更好。 3D投影是图像之间的总体比对,而2D变换是局部对齐,集中在孔区域上。图像对齐的整个过程都是自制的。然后,我们用对齐图像的内容填充目标图像中的孔。最后,我们使用条件生成网络来完善填充图像以获得介入结果。 3DFILL在各种广泛的视图变化上插入图像上的最新性能,并且比其他镶嵌模型具有更快的推理速度。
Most existing image inpainting algorithms are based on a single view, struggling with large holes or the holes containing complicated scenes. Some reference-guided algorithms fill the hole by referring to another viewpoint image and use 2D image alignment. Due to the camera imaging process, simple 2D transformation is difficult to achieve a satisfactory result. In this paper, we propose 3DFill, a simple and efficient method for reference-guided image inpainting. Given a target image with arbitrary hole regions and a reference image from another viewpoint, the 3DFill first aligns the two images by a two-stage method: 3D projection + 2D transformation, which has better results than 2D image alignment. The 3D projection is an overall alignment between images and the 2D transformation is a local alignment focused on the hole region. The entire process of image alignment is self-supervised. We then fill the hole in the target image with the contents of the aligned image. Finally, we use a conditional generation network to refine the filled image to obtain the inpainting result. 3DFill achieves state-of-the-art performance on image inpainting across a variety of wide view shifts and has a faster inference speed than other inpainting models.