论文标题

贝叶斯神经网络用于宏观经济分析

Bayesian Neural Networks for Macroeconomic Analysis

论文作者

Hauzenberger, Niko, Huber, Florian, Klieber, Karin, Marcellino, Massimiliano

论文摘要

宏观经济数据的特征是有限数量的观察值(小t),许多时间序列(大K),但也具有时间依赖性。相比之下,神经网络是为具有数百万观察和协变量的数据集而设计的。在本文中,我们开发了贝叶斯神经网络(BNN),非常适合处理政策机构中通常用于宏观经济分析的数据集。我们的方法避免通过适当选择非线性形式的激活函数的新型混合物规范进行广泛的规范搜索。收缩先验用于修剪网络,并将无关的神经元迫使零。为了应对异性恋性,BNN用随机波动率模型增强了误差项。我们首先表明我们的不同BNN产生精确的密度预测,通常比其他机器学习方法的方法更好,我们可以说明如何在政策机构中使用该模型。最后,我们展示了如何使用模型来恢复宏观经济骨料对财务冲击的反应中的非线性。

Macroeconomic data is characterized by a limited number of observations (small T), many time series (big K) but also by featuring temporal dependence. Neural networks, by contrast, are designed for datasets with millions of observations and covariates. In this paper, we develop Bayesian neural networks (BNNs) that are well-suited for handling datasets commonly used for macroeconomic analysis in policy institutions. Our approach avoids extensive specification searches through a novel mixture specification for the activation function that appropriately selects the form of nonlinearities. Shrinkage priors are used to prune the network and force irrelevant neurons to zero. To cope with heteroskedasticity, the BNN is augmented with a stochastic volatility model for the error term. We illustrate how the model can be used in a policy institution by first showing that our different BNNs produce precise density forecasts, typically better than those from other machine learning methods. Finally, we showcase how our model can be used to recover nonlinearities in the reaction of macroeconomic aggregates to financial shocks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源