论文标题
噪声自我回归:一个新的学习范式,可增强无与任务相关数据的弱光图像
Noise Self-Regression: A New Learning Paradigm to Enhance Low-Light Images Without Task-Related Data
论文作者
论文摘要
基于深度学习的低光图像增强(LLIE)是利用深层神经网络来增强图像照明的任务,同时使图像内容保持不变。从培训数据的角度来看,现有方法完成了以下三种数据类型之一驱动的LLIE任务:配对数据,未配对数据和零参考数据。这些数据驱动的方法的每种类型都有其自身的优势,例如,零引用数据的方法对培训数据的需求非常低,并且在许多情况下可以满足人类需求。在本文中,我们利用纯高斯噪声来完成LLIE任务,这进一步降低了LLIE任务中培训数据的要求,并且可以用作实际使用的另一种选择。具体而言,我们提出了噪声自我回归(Noiser),如果不访问任何与任务相关的数据,只需通过随机噪声图像,$ \ nathcal {n}(0,σ^2)$来了解每个像素的卷积神经网络,并为每个像素提供了训练对,然后对每个像素的输出进行训练,并进行训练的训练图像。从技术上讲,对其有效性的直观解释如下:1)自我回归重建输入图像的相邻像素之间的对比度,2)实例正构层化层自然可以自然地补充输入图像的整体幅度/照明,而3)$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {n}(n}(n})(n}(n})$ cift pix pix pix(n}^2)当图像大小足够大时,灰世界假设。与当前最新的LLIE方法相比,访问与任务相关的数据的最新方法相比,Noiser在增强质量方面具有很高的竞争力,但模型大小要小得多,培训和推理成本较低。此外,Noiser还擅长减轻过度暴露和处理联合任务。
Deep learning-based low-light image enhancement (LLIE) is a task of leveraging deep neural networks to enhance the image illumination while keeping the image content unchanged. From the perspective of training data, existing methods complete the LLIE task driven by one of the following three data types: paired data, unpaired data and zero-reference data. Each type of these data-driven methods has its own advantages, e.g., zero-reference data-based methods have very low requirements on training data and can meet the human needs in many scenarios. In this paper, we leverage pure Gaussian noise to complete the LLIE task, which further reduces the requirements for training data in LLIE tasks and can be used as another alternative in practical use. Specifically, we propose Noise SElf-Regression (NoiSER) without access to any task-related data, simply learns a convolutional neural network equipped with an instance-normalization layer by taking a random noise image, $\mathcal{N}(0,σ^2)$ for each pixel, as both input and output for each training pair, and then the low-light image is fed to the trained network for predicting the normal-light image. Technically, an intuitive explanation for its effectiveness is as follows: 1) the self-regression reconstructs the contrast between adjacent pixels of the input image, 2) the instance-normalization layer may naturally remediate the overall magnitude/lighting of the input image, and 3) the $\mathcal{N}(0,σ^2)$ assumption for each pixel enforces the output image to follow the well-known gray-world hypothesis when the image size is big enough. Compared to current state-of-the-art LLIE methods with access to different task-related data, NoiSER is highly competitive in enhancement quality, yet with a much smaller model size, and much lower training and inference cost. Besides, NoiSER also excels in mitigating overexposure and handling joint tasks.