论文标题

随机子空间近似值中规范角度的有效界限和估计值

Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations

论文作者

Dong, Yijun, Martinsson, Per-Gunnar, Nakatsukasa, Yuji

论文摘要

用“矩阵草图”的随机子空间近似是构建大型矩阵的近似部分奇异值分解(SVD)的有效方法。此类技术的性能已经进行了广泛的分析,并且已经得出了有关残余误差分布的非常精确的估计。但是,我们对计算出的奇异向量的准确性的理解(根据精确的和计算出的奇异向量跨越的空间之间的规范角度来衡量)相对有限。在这项工作中,我们提出了随机子空间近似的规范角度的实际界限和估计,可以有效地计算先验或后验,而无需假设对真正的单数子空间的先验知识。在随机SVD中的中度过度采样下,我们先前的概率界限是渐近的,可以有效地计算出,同时,鉴于固定预算的矩阵矢量乘积数量,在固定预算的情况下,可以清楚地了解过度采样和功率迭代之间的平衡。数值实验证明了这些规范角度边界的经验有效性以及对随机SVD的各种算法选择下不同矩阵的估计。

Randomized subspace approximation with "matrix sketching" is an effective approach for constructing approximate partial singular value decompositions (SVDs) of large matrices. The performance of such techniques has been extensively analyzed, and very precise estimates on the distribution of the residual errors have been derived. However, our understanding of the accuracy of the computed singular vectors (measured in terms of the canonical angles between the spaces spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In this work, we present practical bounds and estimates for canonical angles of randomized subspace approximation that can be computed efficiently either a priori or a posteriori, without assuming prior knowledge of the true singular subspaces. Under moderate oversampling in the randomized SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while bringing a clear insight into the balance between oversampling and power iterations given a fixed budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the empirical effectiveness of these canonical angle bounds and estimates on different matrices under various algorithmic choices for the randomized SVD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源