论文标题
探索沿海海平面概率分布的非平稳性
Exploring the non-stationarity of coastal sea level probability distributions
论文作者
论文摘要
研究就20世纪的全球平均海平面上升以及卫星记录中最近21世纪的加速度达成一致。在区域尺度上,通常认为海平面概率分布的演变是由平均值变化主导的。但是,目前缺少对气候变化的分布形状变化的量化。为此,我们提出了一个新颖的框架,该框架量化了时间序列数据的概率分布的重大变化。该框架首先通过分位数回归量化了分位数的线性趋势。然后将分位数斜率投影到一组四个$正交$多项式上,量化了前四个统计矩中$独立$ shifts如何解释这种变化。提出的框架是理论上建立的,一般的,可以应用于可观察到的任何可观察到的气候,并在分布中接近线性变化。我们专注于观测和耦合气候模型(GFDL-CM4)。在历史时期,沿海每日海平面的趋势主要是由平均值变化驱动的,因此可以通过分布的变化而没有变化来解释。在模型的世界中,随着二氧化碳浓度的增加,高阶矩的稳健变化出现。这样的变化仅由海洋水平的压力波动而放大,部分原因是海平面极端归因研究可能会产生后果。
Studies agree on a significant global mean sea level rise in the 20th century and its recent 21st century acceleration in the satellite record. At regional scale, the evolution of sea level probability distributions is often assumed to be dominated by changes in the mean. However, a quantification of changes in distributional shapes in a changing climate is currently missing. To this end, we propose a novel framework quantifying significant changes in probability distributions from time series data. The framework first quantifies linear trends in quantiles through quantile regression. Quantile slopes are then projected onto a set of four $orthogonal$ polynomials quantifying how such changes can be explained by $independent$ shifts in the first four statistical moments. The framework proposed is theoretically founded, general and can be applied to any climate observable with close-to-linear changes in distributions. We focus on observations and a coupled climate model (GFDL-CM4). In the historical period, trends in coastal daily sea level have been driven mainly by changes in the mean and can therefore be explained by a shift of the distribution with no change in shape. In the modeled world, robust changes in higher order moments emerge with increasing CO2 concentration. Such changes are driven in part by ocean circulation alone and get amplified by sea level pressure fluctuations, with possible consequences for sea level extremes attribution studies.