论文标题

相对于可压缩热传导粘性流体的低马赫数限制的域的稳定性

Stability with respect to domain of the low Mach number limit of compressible heat-conducting viscous fluid

论文作者

Wróblewska-Kamińska, Aneta

论文摘要

我们研究了解决方案对Navier-Stokes-foury系统的渐近极限,其马赫数与小参数$ \ varepsilon \ to 0 $成正比,froude的数字与$ \ sqrt {\ sqrt {\ varepsilon} $成比例,当流体占据$ y的空间与$ rugh clate vare的空间易于范围时。极限速度场是电磁阀,并满足不可压缩的Oberbeck-Boussinesq近似。我们的研究基于弱溶液方法,为了在对流术语中传递到极限,我们应用了有关声波运动的相关波传播器(Neumann Laplacian)的光谱分析。

We investigate the asymptotic limit of solutions to the Navier-Stokes-Fourier system with the Mach number proportional to a small parameter $\varepsilon \to 0$, the Froude number proportional to $\sqrt{\varepsilon}$ and when the fluid occupies large domain with spatial obstacle of rough surface varying when $\varepsilon \to 0$. The limit velocity field is solenoidal and satisfies the incompressible Oberbeck-Boussinesq approximation. Our studies are based on weak solutions approach and in order to pass to the limit in a convective term we apply the spectral analysis of the associated wave propagator (Neumann Laplacian) governing the motion of acoustic waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源