论文标题
减少(流)时间:使用异质AI加速器预处理分子GNN
Reducing Down(stream)time: Pretraining Molecular GNNs using Heterogeneous AI Accelerators
论文作者
论文摘要
转移学习的表现成功已经公开了方法,这些方法涉及从大量数据源进行预处理模型,并随后对特定任务进行填充。尽管这种方法已成为自然语言处理等领域的规范,但化学转移学习方法的实施和评估处于早期阶段。在这项工作中,我们在图形神经网络(GNN)上展示了在包含270万水簇的分子数据库中训练的图形神经网络(GNN)上进行的鉴定。将图形IPU用作训练分子GNN的AI加速器的使用将训练时间从报道的2.7天,在0.50万群集上降低到2.70万个簇的1.2小时。在单个GPU上,针对分子动力学下游任务和转移到不同势能表面的下游任务的固定模型分别仅需8.3小时28分钟。
The demonstrated success of transfer learning has popularized approaches that involve pretraining models from massive data sources and subsequent finetuning towards a specific task. While such approaches have become the norm in fields such as natural language processing, implementation and evaluation of transfer learning approaches for chemistry are in the early stages. In this work, we demonstrate finetuning for downstream tasks on a graph neural network (GNN) trained over a molecular database containing 2.7 million water clusters. The use of Graphcore IPUs as an AI accelerator for training molecular GNNs reduces training time from a reported 2.7 days on 0.5M clusters to 1.2 hours on 2.7M clusters. Finetuning the pretrained model for downstream tasks of molecular dynamics and transfer to a different potential energy surface took only 8.3 hours and 28 minutes, respectively, on a single GPU.