论文标题
用字面描述和视觉图像检测委婉语
Detecting Euphemisms with Literal Descriptions and Visual Imagery
论文作者
论文摘要
本文介绍了我们的两阶段系统,用于委婉的检测共享任务,该任务由第三次讲习班与EMNLP 2022结合使用。委婉的单词或表达方式的模棱两可的本质使得在上下文中检测其实际含义具有挑战性。在第一阶段,我们试图通过将文字描述纳入输入文本提示中,以减轻这种歧义。事实证明,这种直接监督会产生显着的绩效提高。在第二阶段,我们使用视觉图像将视觉监督集成到系统中,这是文本对图像模型产生的两组图像,通过将术语和描述作为输入来。我们的实验表明,视觉监督还具有统计学上显着的性能提升。我们的系统以87.2%的F1得分获得了第二名,仅比最佳提交差0.9%。
This paper describes our two-stage system for the Euphemism Detection shared task hosted by the 3rd Workshop on Figurative Language Processing in conjunction with EMNLP 2022. Euphemisms tone down expressions about sensitive or unpleasant issues like addiction and death. The ambiguous nature of euphemistic words or expressions makes it challenging to detect their actual meaning within a context. In the first stage, we seek to mitigate this ambiguity by incorporating literal descriptions into input text prompts to our baseline model. It turns out that this kind of direct supervision yields remarkable performance improvement. In the second stage, we integrate visual supervision into our system using visual imageries, two sets of images generated by a text-to-image model by taking terms and descriptions as input. Our experiments demonstrate that visual supervision also gives a statistically significant performance boost. Our system achieved the second place with an F1 score of 87.2%, only about 0.9% worse than the best submission.