论文标题
媒介传播病毒的测量值随机模型
A measure-valued stochastic model for vector-borne viruses
论文作者
论文摘要
在这项工作中,我们提出了一个测量值的随机过程,该过程代表病毒群体的动力学,该过程由表型性状和地理空间结构,以及在空间位置通过机械载体在空间位置传输的病毒。作为使用该模型的第一个示例,我们展示了如何使用此模型推断病毒群体灭绝的可能性。后来,通过将各种量表结合在人口大小,向量的扩散速度以及其他相关模型参数上,我们将两个不差方程的系统的出现作为系统的巨型描述。在零时的密度存在下,我们还显示了此属性的繁殖时间,并得出了IDE的限制系统的强烈表述。从某种意义上说,这些强大的配方对应于具有突变和矢量传播的空间Lotka-Volterra竞争模型。
In this work we propose a measure-valued stochastic process representing the dynamics of a virus population, structured by phenotypic traits and geographical space, and where viruses are transported between spatial locations by mechanical vectors. As a first example of the use of this model, we show how to use this model to infer results on the probability of extinction of the virus population. Later, by combining various scalings on population sizes, speed of diffusion of vectors, and other relevant model parameters, we show the emergence of two systems of integro-differential equations as Macroscopic descriptions of the system. Under the existence of densities at time zero, we also show the propagation of this property for later times, and derive the strong formulation of the limiting systems of IDEs. These strong formulations, in a sense, correspond to spatial Lotka-Volterra competition models with mutation and vector-borne dispersal.