论文标题
在多尺度震动到测定模拟中,具有物理意识的深度学习模型的异质能量材料模拟
A physics-aware deep learning model for energy localization in multiscale shock-to-detonation simulations of heterogeneous energetic materials
论文作者
论文摘要
在异质能量材料(EM)中进行震动到测得转变(SDT)的预测模拟对于其能量释放和灵敏度的设计和控制至关重要。由于SDT期间EM的热力学的复杂性,必须准确捕获宏尺度响应和亚网格中尺度能量定位。这项工作提出了一个有效,准确的多尺度框架,用于对EM的SDT模拟。我们通过使用深度学习来建模电击激发EM微观结构的中尺度能量定位,从而引入了一种新的SDT模拟方法。提出的多尺度建模框架分为两个阶段。首先,使用物理意识的复发性卷积神经网络(PARC)用于模拟电击引起的异质EM微结构的中尺度能量定位。 PARC是使用热点点火和生长的直接数值模拟(DNS)训练的,该材料的微观结构和生长受到不同输入冲击强度。训练后,使用PARC为宏观SDT模拟提供热点点火和增长率。我们表明,PARC可以在多尺度模拟框架中扮演替代模型的角色,同时大大降低计算成本并提供改进的子网格物理学表示。拟议的多尺度建模方法将为材料科学家设计高性能和更安全的能量材料提供新的工具。
Predictive simulations of the shock-to-detonation transition (SDT) in heterogeneous energetic materials (EM) are vital to the design and control of their energy release and sensitivity. Due to the complexity of the thermo-mechanics of EM during the SDT, both macro-scale response and sub-grid mesoscale energy localization must be captured accurately. This work proposes an efficient and accurate multiscale framework for SDT simulations of EM. We introduce a new approach for SDT simulation by using deep learning to model the mesoscale energy localization of shock-initiated EM microstructures. The proposed multiscale modeling framework is divided into two stages. First, a physics-aware recurrent convolutional neural network (PARC) is used to model the mesoscale energy localization of shock-initiated heterogeneous EM microstructures. PARC is trained using direct numerical simulations (DNS) of hotspot ignition and growth within microstructures of pressed HMX material subjected to different input shock strengths. After training, PARC is employed to supply hotspot ignition and growth rates for macroscale SDT simulations. We show that PARC can play the role of a surrogate model in a multiscale simulation framework, while drastically reducing the computation cost and providing improved representations of the sub-grid physics. The proposed multiscale modeling approach will provide a new tool for material scientists in designing high-performance and safer energetic materials.