论文标题
将$ n $ mode的Jordan-Wigner编码的量子要求从$ n $减少到$ n $降至$ \ lceil \ log_2 {n \ select k} \ rceil $
Reducing the qubit requirement of Jordan-Wigner encodings of $N$-mode, $K$-fermion systems from $N$ to $\lceil \log_2 {N \choose K} \rceil$
论文作者
论文摘要
要模拟量子计算机上的费米子系统,必须将费米子的状态编码到Qubits上。诸如Jordan-Wigner和Bravyi-Kitaev诸如Fermion到问题的映射使用$ n $ Qubits来代表$ N $ Fermionic模式的系统。在这项工作中,我们证明,对于$ k $ fermions和$ n $模式的粒子数保存系统,可以将量子要求减少到信息理论的最低$ \ lceil \ log_2 {n \ select k} \ rceil $。这将提高分子和多体系统模拟的可行性,而近期量子计算机的量子数有限。
To simulate a fermionic system on a quantum computer, it is necessary to encode the state of the fermions onto qubits. Fermion-to-qubit mappings such as the Jordan-Wigner and Bravyi-Kitaev transformations do this using $N$ qubits to represent systems of $N$ fermionic modes. In this work, we demonstrate that for particle number conserving systems of $K$ fermions and $N$ modes, the qubit requirement can be reduced to the information theoretic minimum of $\lceil \log_2 {N \choose K} \rceil$. This will improve the feasibility of simulation of molecules and many-body systems on near-term quantum computers with limited qubit number.