论文标题

与生成对抗网络脱并列星系

Deblending Galaxies with Generative Adversarial Networks

论文作者

Hemmati, Shoubaneh, Huff, Eric, Nayyeri, Hooshang, Ferté, Agnès, Melchior, Peter, Mobasher, Bahram, Rhodes, Jason, Shahidi, Abtin, Teplitz, Harry

论文摘要

包括生成对抗网络(GAN)在内的深层生成模型是学习数据集的分布时强大的无监督工具。在Pytorch中建立一个简单的GAN架构,并在烛台数据集中培训,我们通过噪声向量从Hubble Space望远镜分辨率生成星系图像。我们通过修改GAN体系结构来进行进行进行,以通过将其分辨率提高到HST分辨率来改善Subaru超级胶卷地面图像。我们在大量混合星系中使用超级分辨率gan,并使用烛台切口创建。在我们的模拟混合样品中,即使在HST分辨率切口中,也无法识别$ \ sim 20 \%$。在类似于HSC的切口中,此部分上升到$ \ sim 90 \%$。使用我们的修改后的gan,我们可以将此值降低到$ \ sim 50 \%$。我们在两个混合物体之间的角度分离,通量比,大小和红移差的整个歧管上量化了高,低和gan分辨率的混合分数。 GAN De -Drender发现的两个峰会在混合物体的光度法测量中提高了十倍。为了修改GAN的体系结构,我们还训练了一个具有七个频带光学+NIR HST切口的多波长GAN。与单频段gan相比,这种多波长gan将检测到的混合物的比例提高了另一个$ \ sim 10 \%$。这对当前和未来的精确宇宙学实验(例如LSST,Spherex,Euclid,Roman)最有益,特别是那些依靠弱重力镜头的人,在这种情况下,混合是系统错误的主要来源。

Deep generative models including generative adversarial networks (GANs) are powerful unsupervised tools in learning the distributions of data sets. Building a simple GAN architecture in PyTorch and training on the CANDELS data set, we generate galaxy images with the Hubble Space Telescope resolution starting from a noise vector. We proceed by modifying the GAN architecture to improve the Subaru Hyper Suprime-Cam ground-based images by increasing their resolution to the HST resolution. We use the super resolution GAN on a large sample of blended galaxies which we create using CANDELS cutouts. In our simulated blend sample, $\sim 20 \%$ would unrecognizably be blended even in the HST resolution cutouts. In the HSC-like cutouts this fraction rises to $\sim 90\%$. With our modified GAN we can lower this value to $\sim 50\%$. We quantify the blending fraction in the high, low and GAN resolutions over the whole manifold of angular separation, flux ratios, sizes and redshift difference between the two blended objects. The two peaks found by the GAN deblender result in ten times improvement in the photometry measurement of the blended objects. Modifying the architecture of the GAN, we also train a Multi-wavelength GAN with seven band optical+NIR HST cutouts. This multi-wavelength GAN improves the fraction of detected blends by another $\sim 10\%$ compared to the single-band GAN. This is most beneficial to the current and future precision cosmology experiments (e.g., LSST, SPHEREx, Euclid, Roman), specifically those relying on weak gravitational lensing, where blending is a major source of systematic error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源