论文标题
低形式的对称性
Lower-Form Symmetries
论文作者
论文摘要
当在$ d $时空尺寸中计量$(d-1)$ - 形式对称性时,人们正式期望测量理论携带双$ -1 $ - 形式对称性。这项工作着重于对这种对称性的研究,尤其是通过二维场理论(着眼于通用量子场理论)实施它们的时空填充拓扑操作员。由于已知具有$(d-1)$ - 表单对称性的理论等于直接的本地理论,因此我们回顾了如何将$(d-1)$ - 表单对称项目计算到此总和中的单个组件上,并解释如何计算结果$ -1 $ -1 $ -Form-form-form-form-form-form-form-form-metmetry恢复直接总和。
When gauging a $(d-1)$-form symmetry in $d$ spacetime dimensions, one formally expects the gauged theory to carry a dual $-1$-form symmetry. This work focuses on the study of such symmetries, in particular via the spacetime-filling topological operators that implement them, in two-dimensional field theory (with an eye towards general quantum field theory). As theories with $(d-1)$-form symmetries are known to be equivalent to direct sums of local theories, we review how gauging a $(d-1)$-form symmetry projects onto a single component in this sum, and explain how gauging the resulting $-1$-form symmetry restores the direct sum.