论文标题

计算有限的树和平面图上的方形着色

Computing Square Colorings on Bounded-Treewidth and Planar Graphs

论文作者

Agrawal, Akanksha, Marx, Dániel, Neuen, Daniel, Slusallek, Jasper

论文摘要

图形$ g $的正方形着色是$ g $ $ g $的Square $ g^2 $的着色,即$ g $的顶点的着色,以使任何两个在距离$ 2 $ in $ g $中的顶点最多2 $ in $ g $获得不同的颜色。我们研究了找到具有给定数量的$ Q $颜色的正方形着色的复杂性。我们表明,问题是通过在运行时呈现算法$ n^{2^{\ propatatorName {tw} + 4} + 4} + 4} + o(1)} $,以最多在$ $ \ perepatateRateOrnOrnArnAme {tw} $中,可以通过运行时间$ n^{2^{2^{\ operatorName {\ operatorName {\ operatorname {tw} + 4} + o(tw} $)。在运行时间内的某种不寻常的指数$ 2^{\ promatorName {tw}} $实质上是最佳的:我们证明,对于任何$ε> 0 $,都没有运行时间$ f(\ propatorNAME {tw} tw})n^{(2-ε)^{(2-ε)^{\ operatorneys的算法,ntw} 我们还表明,方形着色问题是平面图上的NP-固定数字$ q \ ge 4 $的颜色。我们的主要算法结果表明,可以在平面图上的问题(当颜色数量$ q $是输入的一部分时)可以在次指定时间$ 2^{o(n^{2/3} \ log n)} $中求解。结果来自两种算法的组合。如果颜色的数字$ q $很小($ \ le n^{1/3} $),那么我们可以利用图表正方形上的树宽限制,以解决问题$ 2^{o(\ sqrt {qn} \ log log n)} $。如果颜色的数量很大($ \ ge n^{1/3} $),则基于突出分解的算法,并基于我们为有界树的结果而构建的算法可以在时间上解决问题$ 2^{o(n \ log n/q)} $。

A square coloring of a graph $G$ is a coloring of the square $G^2$ of $G$, that is, a coloring of the vertices of $G$ such that any two vertices that are at distance at most $2$ in $G$ receive different colors. We investigate the complexity of finding a square coloring with a given number of $q$ colors. We show that the problem is polynomial-time solvable on graphs of bounded treewidth by presenting an algorithm with running time $n^{2^{\operatorname{tw} + 4}+O(1)}$ for graphs of treewidth at most $\operatorname{tw}$. The somewhat unusual exponent $2^{\operatorname{tw}}$ in the running time is essentially optimal: we show that for any $ε>0$, there is no algorithm with running time $f(\operatorname{tw})n^{(2-ε)^{\operatorname{tw}}}$ unless the Exponential-Time Hypothesis (ETH) fails. We also show that the square coloring problem is NP-hard on planar graphs for any fixed number $q \ge 4$ of colors. Our main algorithmic result is showing that the problem (when the number of colors $q$ is part of the input) can be solved in subexponential time $2^{O(n^{2/3}\log n)}$ on planar graphs. The result follows from the combination of two algorithms. If the number $q$ of colors is small ($\le n^{1/3}$), then we can exploit a treewidth bound on the square of the graph to solve the problem in time $2^{O(\sqrt{qn}\log n)}$. If the number of colors is large ($\ge n^{1/3}$), then an algorithm based on protrusion decompositions and building on our result for the bounded-treewidth case solves the problem in time $2^{O(n\log n/q)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源