论文标题

自动发现具有欧几里得的广义标准材料模型

Automated discovery of generalized standard material models with EUCLID

论文作者

Flaschel, Moritz, Kumar, Siddhant, De Lorenzis, Laura

论文摘要

我们将无监督的自动发现(Euclid)的方法的范围扩展到属于未知类别类别的材料的情况下。为此,我们利用了广义标准材料的理论,该理论涵盖了许多重要的本构类别。我们表明,仅基于全场运动学测量和净反作用力,Euclid能够自动发现两个标量的热力学潜力,即Helmholtz自由能和耗散电位,从而完全定义了广义标准材料的行为。通过发现模型的构造稳定性和热力学一致性保证的这些潜力的先验强制性约束;线性动量的平衡充当基本限制,以替代标记为应力对的应力 - 对成对的可用性;促进正则化的稀疏性可以从可能的大量候选模型特征中自动选择一个小子集,从而导致简约的,即简单且可解释的模型。重要的是,由于模型特征与相应活跃的内部变量并驾齐驱,因此稀疏回归自动诱导了对材料行为准确但简单描述所需的少数内部变量的简约选择。一个全自动的过程导致选择控制稀疏性重量的超参数促进正则化项,以在模型准确性和简单性之间达到用户定义的平衡。通过测试包括人工噪声在内的合成数据的方法,我们证明了Euclid能够从大型构成类别的大量目录中自动发现真正的隐藏材料模型,包括弹性,粘弹性,耐粘液,耐塑性,粘塑性,粘塑性,同型和基因性硬化。

We extend the scope of our approach for unsupervised automated discovery of material laws (EUCLID) to the case of a material belonging to an unknown class of behavior. To this end, we leverage the theory of generalized standard materials, which encompasses a plethora of important constitutive classes. We show that, based only on full-field kinematic measurements and net reaction forces, EUCLID is able to automatically discover the two scalar thermodynamic potentials, namely, the Helmholtz free energy and the dissipation potential, which completely define the behavior of generalized standard materials. The a priori enforced constraint of convexity on these potentials guarantees by construction stability and thermodynamic consistency of the discovered model; balance of linear momentum acts as a fundamental constraint to replace the availability of stress-strain labeled pairs; sparsity promoting regularization enables the automatic selection of a small subset from a possibly large number of candidate model features and thus leads to a parsimonious, i.e., simple and interpretable, model. Importantly, since model features go hand in hand with the correspondingly active internal variables, sparse regression automatically induces a parsimonious selection of the few internal variables needed for an accurate but simple description of the material behavior. A fully automatic procedure leads to the selection of the hyperparameter controlling the weight of the sparsity promoting regularization term, in order to strike a user-defined balance between model accuracy and simplicity. By testing the method on synthetic data including artificial noise, we demonstrate that EUCLID is able to automatically discover the true hidden material model from a large catalog of constitutive classes, including elasticity, viscoelasticity, elastoplasticity, viscoplasticity, isotropic and kinematic hardening.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源