论文标题

大$(k; r,s; n,q)$ - 设置在投影空间

Large $(k; r, s; n, q)$-sets in Projective Spaces

论文作者

Ihringer, Ferdinand, Verstraëte, Jacques

论文摘要

a $(k; r,s; n,q)$ - set(short:$(r,s)$ - set)$ \ mathrm {pg}(n,q)$是一组点$ x $,带有$ | x | = k $,因此没有$ s $ -space包含$ x $的$ r $点。我们研究了$(R,S)$的渐近尺寸 - 固定$ n $的套件和$ Q \ rightarrow \ infty $。特别是,我们表明存在$(3,2)$ - 尺寸$(1+O(1))Q^{3/2} $的$ N = 6 $,$(4,2)$ - 尺寸$(1+O(1+O(1))Q^{\ frac {\ frac {n-1}} {2}}} $(1+(1+)$(1+(9,2 size)Q^Q^{1+O(1) $ n = 4 $。我们还从1947年开始将Rao的限制概括,并表明$(r,s)$ - set最多具有$ o(q^{\ frac {n-e+1}} {e}}} $,如果存在整数$ d,e \ geq 2 $,则$ d(e \ geq 2)

A $(k; r, s; n, q)$-set (short: $(r,s)$-set) of $\mathrm{PG}(n, q)$ is a set of points $X$ with $|X| = k$ such that no $s$-space contains more than $r$ points of $X$. We investigate the asymptotic size of $(r, s)$-sets for $n$ fixed and $q \rightarrow \infty$. In particular, we show the existence of $(3, 2)$-sets of size $(1+o(1)) q^{3/2}$ for $n=6$, $(4, 2)$-sets of size $(1+o(1)) q^{\frac{n-1}{2}}$, and $(9, 2)$-sets of size $(1+o(1)) q^2$ for $n=4$. We also generalize a bound by Rao from 1947 and show that an $(r,s)$-set has size at most $O(q^{\frac{n-e+1}{e}})$ if there exist integers $d,e \geq 2$ such that $s=d(e-1)$ and $r=de-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源