论文标题
在量子Gromov-Hausdorff距离中收集到奇数的操作器代数序列
Sequences of operator algebras converging to odd spheres in the quantum Gromov-Hausdorff distance
论文作者
论文摘要
马克·里夫(Marc Rieffel)在紧凑型量子公制空间上引入了量子gromov-hausdorff距离的概念,并找到了一系列矩阵代数,该矩阵代数在此距离内收敛到连续函数的空间。人们发现在理论物理文献中许多地方的许多地方都有相似近似值的应用。在本文中,我们在广义伯格曼空间上的Toeplitz代数序列上定义了一个紧凑的量子度量空间结构,并证明该序列在量子Gromov-Hausdorff距离的奇数球上收敛到连续函数的空间。
Marc Rieffel had introduced the notion of the quantum Gromov-Hausdorff distance on compact quantum metric spaces and found a sequence of matrix algebras that converges to the space of continuous functions on $2$-sphere in this distance. One finds applications of similar approximations in many places in the theoretical physics literature. In this paper, we have defined a compact quantum metric space structure on the sequence of Toeplitz algebras on generalized Bergman spaces and have proved that the sequence converges to the space of continuous function on odd spheres in the quantum Gromov-Hausdorff distance.