论文标题
在线性扩散 - 辅助系统中的快速两脉冲碰撞,空间维度较弱的二次损失2
Fast two-pulse collisions in linear diffusion-advection systems with weak quadratic loss in spatial dimension 2
论文作者
论文摘要
我们研究了空间维度2中二维二次损失的线性扩散 - 衰减系统中快速两脉冲碰撞的动力学。我们介绍了一种二维扰动方法,该方法通常将用于研究空间维度的两脉冲碰撞的扰动方法概括为在危险中进行危险2。然后,在危险范围内使用迅速的效果。横向前流速度载体。此外,我们表明,在可分离初始条件的重要情况下,振幅移位表达式中的纵向部分具有简单的通用形式,而横向部分则没有。此外,我们表明在初始条件下的各向异性导致振幅移动对脉冲之间的方向角的复杂依赖性。我们的扰动理论预测与具有弱扰动扩散 - 引入模型的广泛数值模拟的结果非常吻合。因此,我们的研究显着增强并概括了以前在扩散 - 辅助系统中快速碰撞的作品的结果,这些涉及仅限于空间维度1。
We investigate the dynamics of fast two-pulse collisions in linear diffusion-advection systems with weak quadratic loss in spatial dimension 2. We introduce a two-dimensional perturbation method, which generalizes the perturbation method used for studying two-pulse collisions in spatial dimension 1. We then use the generalized perturbation method to show that a fast collision in spatial dimension 2 leads to a change in the pulse shape in the direction transverse to the advection velocity vector. Moreover, we show that in the important case of a separable initial condition, the longitudinal part in the expression for the amplitude shift has a simple universal form, while the transverse part does not. Additionally, we show that anisotropy in the initial condition leads to a complex dependence of the amplitude shift on the orientation angle between the pulses. Our perturbation theory predictions are in very good agreement with results of extensive numerical simulations with the weakly perturbed diffusion-advection model. Thus, our study significantly enhances and generalizes the results of previous works on fast collisions in diffusion-advection systems, which were limited to spatial dimension 1.