论文标题

从纵向体积数据中学习与神经台的疾病进展的时空模型

Learning Spatio-Temporal Model of Disease Progression with NeuralODEs from Longitudinal Volumetric Data

论文作者

Lachinov, Dmitrii, Chakravarty, Arunava, Grechenig, Christoph, Schmidt-Erfurth, Ursula, Bogunovic, Hrvoje

论文摘要

对正在进行的疾病所造成的未来解剖变化的强大预测是一项极具挑战性的任务,即使对于经验丰富的医疗保健专业人员来说,也是不可能的。但是,这样的能力非常重要,因为它可以通过在入院阶段提供有关疾病进展的信息来改善患者的管理,或者可以通过快速进步者来丰富临床试验,并通过数字双胞胎避免需要控制臂。在这项工作中,我们开发了一种深度学习方法,该方法通过处理单一的医疗扫描并在要求的未来时间点提供对目标解剖结构的分割来模拟与年龄有关的疾病的演变。我们的方法代表了一个时间不变的物理过程,并解决了使用神经台阶对时间像素级变化进行建模的大规模问题。此外,我们演示了将先前的特定域特异性约束纳入我们的方法的方法,并为学习时间目标定义时间骰子损失。为了评估我们在不同年龄相关的疾病和成像方式上我们的方法的适用性,我们在数据集上开发并测试了100例地理萎缩患者的967个视网膜OCT体积的拟议方法,以及633例阿尔茨海默氏病患者的2823例脑MRI量。对于地理萎缩,所提出的方法在萎缩生长预测中的表现优于相关的基线模型。对于阿尔茨海默氏病,提出的方法在预测疾病引起的脑心室变化方面表现出了显着的表现,从而实现了最新的tadpole挑战。

Robust forecasting of the future anatomical changes inflicted by an ongoing disease is an extremely challenging task that is out of grasp even for experienced healthcare professionals. Such a capability, however, is of great importance since it can improve patient management by providing information on the speed of disease progression already at the admission stage, or it can enrich the clinical trials with fast progressors and avoid the need for control arms by the means of digital twins. In this work, we develop a deep learning method that models the evolution of age-related disease by processing a single medical scan and providing a segmentation of the target anatomy at a requested future point in time. Our method represents a time-invariant physical process and solves a large-scale problem of modeling temporal pixel-level changes utilizing NeuralODEs. In addition, we demonstrate the approaches to incorporate the prior domain-specific constraints into our method and define temporal Dice loss for learning temporal objectives. To evaluate the applicability of our approach across different age-related diseases and imaging modalities, we developed and tested the proposed method on the datasets with 967 retinal OCT volumes of 100 patients with Geographic Atrophy, and 2823 brain MRI volumes of 633 patients with Alzheimer's Disease. For Geographic Atrophy, the proposed method outperformed the related baseline models in the atrophy growth prediction. For Alzheimer's Disease, the proposed method demonstrated remarkable performance in predicting the brain ventricle changes induced by the disease, achieving the state-of-the-art result on TADPOLE challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源