论文标题
关于抛物线空间中的密度问题
On the density problem in the parabolic space
论文作者
论文摘要
在这项工作中,我们扩展了许多经典结果,这些结果将密度,切线和重新讨论性之间的关系与抛物线空间之间的关系之间的关系,即配备了抛物线扩张的$ \ Mathbb {r}^{n+1} $。特别是,我们证明了一般维度度量的Marstand-Mattila重新讨论性标准,我们通过密度的内在整流措施提供了表征,并且我们研究了$ 1 $ sodimensixional均匀度量的结构。最后,我们将一些结果应用于对抛物线可重构性的定量版本的研究:我们证明,$ 1 $ $ primensitional ahlfors-regular-grounder量度的弱恒定密度条件意味着双侧弱的几何引理。
In this work we extend many classical results concerning the relationship between densities, tangents and rectifiability to the parabolic spaces, namely $\mathbb{R}^{n+1}$ equipped with parabolic dilations. In particular we prove a Marstrand-Mattila rectifiability criterion for measures of general dimension, we provide a characterisation through densities of intrinsic rectifiable measures, and we study the structure of $1$-codimensional uniform measures. Finally, we apply some of our results to the study of a quantitative version of parabolic rectifiability: we prove that the weak constant density condition for a $1$-codimensional Ahlfors-regular measure implies the bilateral weak geometric lemma.