论文标题

通过曲折边缘重建的示例,用于从头开始计算的半无限石墨烯的最佳模型

Optimal model of semi-infinite graphene for ab initio calculations of reactions at graphene edges by the example of zigzag edge reconstruction

论文作者

Polynskaya, Yulia G., Lebedeva, Irina V., Knizhnik, Andrey A., Popov, Andrey M.

论文摘要

我们研究了在周期性边界条件下基于石墨烯纳米替孔模型的模型的参数如何通过Zigzag石墨烯边缘重建的第一阶段的示例来影响Ab ISTIL计算在石墨烯边缘的准确性。结果表明,要适当地收敛结果,纳米孔应至少由6个曲折行组成,沿纳米轴轴的对周期性图像应至少由至少6个Hexagons分开。发现分离的五边形 - 甲基对形成的聚合反应能和激活屏障分别为-0.15 eV和1.61 eV。还揭示了此类缺陷仅在局部减少石墨烯边缘磁化强度,但是在相反的纳米纤维边缘从反平行(抗磁磁性)开关的旋转序列,从而在增加缺陷密度后平行于一个(铁磁)。

We investigate how parameters of the model of semi-infinite graphene based on a graphene nanoribbon under periodic boundary conditions affect the accuracy of ab initio calculations of reactions at graphene edges by the example of the first stage of reconstruction of zigzag graphene edges, formation of a pentagon-heptagon pair. It is shown that to converge properly the results, the nanoribbon should consist of at least 6 zigzag rows and periodic images of the pair along the nanoribbon axis should be separated by at least 6 hexagons. The converged reaction energy and activation barrier for formation of an isolated pentagon-heptagon pair are found to be -0.15 eV and 1.61 eV, respectively. It is also revealed that such defects reduce the graphene edge magnetization only locally but ordering of spins at opposite nanoribbon edges switches from the antiparallel (antiferromagnetic) to parallel one (ferromagnetic) upon increasing the defect density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源