论文标题
与许多组件的混合物中的组成依赖不稳定性
Composition Dependent Instabilities in Mixtures With Many Components
论文作者
论文摘要
在许多情况下,了解混合物与许多组件的相位行为很重要,包括作为基于物理学的细胞内分室化描述的关键步骤。在这里,我们研究了第二个病毒系数作为随机高斯变量的混合模型的不稳定性。使用来自自由概率理论的工具,我们获得了具有任意组成的混合物的精确旋转曲线和不稳定性的性质,从而提高了先前研究的均匀混合物成分密度的假设。我们表明,通过仅控制几个组件的体积分数,可以系统地改变旋转不稳定性的性质,并通过强{\ em组成不平衡放大}实现对现实场景的混合。这是由于熵效应的非平凡相互作用而导致的,这是由于相互作用中的不均匀组成和复杂性。我们的方法允许包含任何有限数量的结构化相互作用,从而导致不同形式的解混合之间的竞争,因为密度是不同的。
Understanding the phase behavior of mixtures with many components is important in many contexts, including as a key step toward a physics-based description of intracellular compartmentalization. Here, we study the instabilities of a mixture model where the second virial coefficients are taken as random Gaussian variables. Using tools from free probability theory we obtain the exact spinodal curve and the nature of instabilities for a mixture with an arbitrary composition, thus lifting the assumption of uniform mixture component densities pervading previous studies. We show that, by controlling the volume fraction of only a few components, one can systematically change the nature of the spinodal instability and achieve demixing for realistic scenarios by a strong {\em composition imbalance amplification}. This results from a non-trivial interplay of entropic effects due to non-uniform composition and complexity in the interactions. Our approach allows for the inclusion of any finite number of structured interactions, leading to a competition between different forms of demixing as density is varied.