论文标题

Automl的技术出现:在行业背景下对性能软件和应用的调查

The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry

论文作者

Scriven, Alexander, Kedziora, David Jacob, Musial, Katarzyna, Gabrys, Bogdan

论文摘要

在大多数技术领域,基本的学术研究和实际工业吸收之间存在延迟。尽管一些科学在商业化方面具有强大且有公认的过程,例如制药的药物试验实践,但其他领域则面临暂时性的时期,在这种时期中,基本的学术进步逐渐扩散到商业和行业。对于仍然相对年轻的自动/自动驾驶机器学习(AutoML/Automoml)的领域,该暂时性时期正在进行,这是由于更广泛的社会的兴起而刺激了。然而,迄今为止,很少进行研究来评估这种传播的当前状态及其吸收。因此,这篇评论为有关该主题的知识做出了两个主要贡献。首先,它对开源和商业的现有汽车工具提供了最新和全面的调查。其次,它激励并概述了评估为现实世界应用设计的汽车解决方案是否为“表现”的框架;考虑到各种利益相关者的需求以及为其服务所需的人类交互,该框架超出了典型的学术标准的局限性。因此,在对学术和商业案例研究的广泛评估和比较的支持下,本综述评估了2020年代初与Automl的主流互动,从而确定了加速未来吸收的障碍和机会。

With most technical fields, there exists a delay between fundamental academic research and practical industrial uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental academic advancements diffuse gradually into the space of commerce and industry. For the still relatively young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been undertaken to assess the current state of this dissemination and its uptake. Thus, this review makes two primary contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework for assessing whether an AutoML solution designed for real-world application is 'performant'; this framework extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and the human-computer interactions required to service them. Thus, additionally supported by an extensive assessment and comparison of academic and commercial case-studies, this review evaluates mainstream engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future uptake.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源