论文标题

通过基质分解改善了贪婪的BST的模式避免界限

Improved Pattern-Avoidance Bounds for Greedy BSTs via Matrix Decomposition

论文作者

Chalermsook, Parinya, Gupta, Manoj, Jiamjitrak, Wanchote, Acosta, Nidia Obscura, Pareek, Akash, Yingchareonthawornchai, Sorrachai

论文摘要

贪婪的BST(或简单的贪婪)是在几何观点中定义的在线自调整的二进制搜索树([[Lucas,1988; Munro,2000; Demaine,Harmon,Iacono,Kane,Kane,Patrascu,Soda 2009)。与张开的树(Sleator,Tarjan 1985)一起,贪婪被认为是动态最佳的最有前途的候选人,即从任何初始树开始,任何序列上的访问成本都在任何序列上的访问成本都在离线最佳的$ O(1)$(1)范围内。但是,在过去的四十年中,即使对于高度限制的投入,这个问题仍然难以捉摸。 在本文中,我们证明了“避免模式”制度中贪婪成本的新范围。我们的新结果包括: 贪婪的(预订)遍历构想的范围为$ O(2^{α(n)})$,在$ 2^{α(n)^{o(1)}} $(Chalermsook等人,2015年)的限制上得到改善。这是任何在线BST获得的最著名的界限。 我们解决了贪婪的邮政遍历猜想。 贪婪的Deque猜想的最高为$ O(α(n))$,在限制的$ 2^{o(α(n))} $上改善(Chalermsook等,Wads 2015)。 分裂猜想的贪婪为$ O(2^{α(n)})$。 所有这些结果的关键是(基于输入结构)将贪婪的执行日志(基于输入结构)划分为几个更简单的分析子集,可以利用经典的禁止子矩阵边界。最后,我们展示了该技术在处理一类日益复杂的避免模式的输入序列的适用性,称为$ k $ increasing semences。 作为奖励,我们发现了一个新的置换矩阵,其极端界限是多项式界限的。这给了雅各布·福克斯(Jacob Fox,2013)的公开问题取得部分进展。

Greedy BST (or simply Greedy) is an online self-adjusting binary search tree defined in the geometric view ([Lucas, 1988; Munro, 2000; Demaine, Harmon, Iacono, Kane, Patrascu, SODA 2009). Along with Splay trees (Sleator, Tarjan 1985), Greedy is considered the most promising candidate for being dynamically optimal, i.e., starting with any initial tree, their access costs on any sequence is conjectured to be within $O(1)$ factor of the offline optimal. However, in the past four decades, the question has remained elusive even for highly restricted input. In this paper, we prove new bounds on the cost of Greedy in the ''pattern avoidance'' regime. Our new results include: The (preorder) traversal conjecture for Greedy holds up to a factor of $O(2^{α(n)})$, improving upon the bound of $2^{α(n)^{O(1)}}$ in (Chalermsook et al., FOCS 2015). This is the best known bound obtained by any online BSTs. We settle the postorder traversal conjecture for Greedy. The deque conjecture for Greedy holds up to a factor of $O(α(n))$, improving upon the bound $2^{O(α(n))}$ in (Chalermsook, et al., WADS 2015). The split conjecture holds for Greedy up to a factor of $O(2^{α(n)})$. Key to all these results is to partition (based on the input structures) the execution log of Greedy into several simpler-to-analyze subsets for which classical forbidden submatrix bounds can be leveraged. Finally, we show the applicability of this technique to handle a class of increasingly complex pattern-avoiding input sequences, called $k$-increasing sequences. As a bonus, we discover a new class of permutation matrices whose extremal bounds are polynomially bounded. This gives a partial progress on an open question by Jacob Fox (2013).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源