论文标题

部分可观测时空混沌系统的无模型预测

A note on distinct differences in $t$-intersecting families

论文作者

Bhanja, Jagannath, Goswami, Sayan

论文摘要

对于一个$ \ {1,2,\ ldots,n \} $的子集的$ \ Mathcal {f} $ $ \ mathcal {f} $。家庭$ \ Mathcal {f} $称为$ t $ - 更正家庭,如果用于某些正整数$ t $,而任意两个成员$ f,g \ in \ Mathcal {f} $我们有$ | f \ cap g | \ geq t $。如果$ t = 1 $,则家庭$ \ Mathcal {f} $简单地称为相交。最近,弗兰克尔(Frankl)证明了$ \ mathcal {d}(\ Mathcal {f})$的上限,用于相交家庭$ \ Mathcal {f} $。在本说明中,我们将Frankl的结果扩展到了$ t $的建立家庭。

For a family $\mathcal{F}$ of subsets of $\{1,2,\ldots,n\}$, let $\mathcal{D}(\mathcal{F}) = \{F\setminus G: F, G \in \mathcal{F}\}$ be the collection of all (setwise) differences of $\mathcal{F}$. The family $\mathcal{F}$ is called a $t$-intersecting family, if for some positive integer $t$ and any two members $F, G \in \mathcal{F}$ we have $|F\cap G| \geq t$. The family $\mathcal{F}$ is simply called intersecting if $t=1$. Recently, Frankl proved an upper bound on the size of $\mathcal{D}(\mathcal{F})$ for the intersecting families $\mathcal{F}$. In this note we extend the result of Frankl to $t$-intersecting families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源