论文标题

高功率迈克尔逊干涉仪的单光子信号侧带检测

Single-Photon Signal Sideband Detection for High-Power Michelson Interferometers

论文作者

McCuller, Lee

论文摘要

迈克尔逊干涉仪是实验物理的基石。它的应用范围从在教育环境中提供波浪干扰的第一印象到在微小的精度尺度上进行探测时空。干涉仪精度提供了物质和能量的基本介质的独特视图,为新物理学提供了测试,并搜索了远处天体物理事件的重力波特征。光学干涉仪通常通过连续测量其输出端口的功率来操作。然后信号扰动创建边带字段,用调节功能的条纹灯形成​​节拍音符。当在几乎黑暗的破坏性干扰条纹上操作时,此读数是一种同性恋检测的形式,其不精确是``标准量子限制''归因于量子真空波动中的射击噪声。侧带信号场携带的能量可以直接观察为与源激光不同的光子。如果没有信号能量,真空就不会形成边带,也不会伪装产生光子计数或射击噪声。因此,当经典背景低于标准量子限制时,搜索弱信号时,计数可以提供改进的统计信息。在这里,用于光学干涉法的光子计数统计量是对两种形式的测量形式进行描述的,并显示了计数大大优于同性恋读数的情况,即使是挤压状态量子量子的增强。光子计数的最直接应用是改善对随机信号的搜索,例如来自量子重力或新粒子场。计数的优点可能扩展到更广泛的应用,例如重力波检测器,并且引入了Fisher-Information代表光谱密度的概念以激发进一步的研究。

The Michelson interferometer is a cornerstone of experimental physics. Its applications range from providing first impressions of wave interference in educational settings to probing spacetime at minuscule precision scales. Interferometer precision provides a unique view of the fundamental medium of matter and energy, enabling tests for new physics as well as searches for the gravitational wave signatures of distant astrophysical events. Optical interferometers are typically operated by continuously measuring the power at their output port. Signal perturbations then create sideband fields, forming a beat-note with the fringe light that modulates that power. When operated at a nearly-dark destructive interference fringe, this readout is a form of homodyne detection, with an imprecision set by a ``standard quantum limit'' attributed to shot noise from quantum vacuum fluctuations. The sideband signal fields carry energy which can, alternatively, be directly observed as photons distinct from the source laser. Without signal energy, vacuum does not form sidebands and cannot spuriously create photon counts or shot noise. Thus, counting can offer improved statistics when searching for weak signals when classical backgrounds are below the standard quantum limit. Here, photon counting statistics are described for optical interferometry, relating the two forms of measurement and showing cases where counting greatly outperforms homodyne readout, even with squeezed state quantum enhancement. The most immediate application for photon counting is improving searches of stochastic signals, such as from quantum gravity or from new particle fields. The advantages of counting may extend to wider applications, such as gravitational wave detectors, and the concept of Fisher-information representative spectral density is introduced to motivate further study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源