论文标题
Nielsen实现问题的不可取向表面
The Nielsen Realization Problem for Non-Orientable Surfaces
论文作者
论文摘要
我们可以通过其可定向的双层盖的Teichmüller空间的子空间来识别出不可取向表面的Teichmüller空间。同样,众所周知,可以使用$ \ text {mod}(s_ {g-1}; 2k)$的子组(映射类$ \ text {mod}(mod}(n_g; k)$,可以通过$ \ text {mod}(s_ {g-1}; 2k)$识别,其定向双盖的映射类组。这些事实与经典的尼尔森实现定理一起证明,$ \ text {mod}(n_g; k)$的每个有限亚组可以同态抬高至diffefemormormormormormormormorphists $ \ text {diff}(diff}(diff}(n_g; k)$)的子组。相比之下,我们显示投影$ \ text {diff}(n_g)\ to \ text {mod}(n_g)$不接受大型$ g $的部分。
We show the Teichmüller space of a non-orientable surface with marked points (considered as a Klein surface) can be identified with a subspace of the Teichmüller space of its orientable double cover. Also, it is well known that the mapping class group $\text{Mod} (N_g; k)$ of a non-orientable surface can be identified with a subgroup of $\text{Mod} (S_{g-1}; 2k)$, the mapping class group of its orientable double cover. These facts together with the classical Nielsen realization theorem are used to prove that every finite subgroup of $\text{Mod}(N_g; k)$ can be lifted isomorphically to a subgroup of the group of diffeomorphisms $\text{Diff}(N_g; k)$. In contrast, we show the projection $\text{Diff}(N_g) \to \text{Mod}(N_g)$ does not admit a section for large $g$.