论文标题
无序的弧线和更稳定的稳定性
Disordered arcs and Harer stability
论文作者
论文摘要
我们提供了新的同源稳定性证明,具有最著名的同构范围,用于绘制相对于属的表面群体组。该证明使用Randal-Williams-Wahl和Krannich的框架应用于圆盘稳定,以折叠表面的类别稳定,使用Euler特征而不是属作为分级。双装饰表面的单体类别不承认编织,将其与以前已知的同源稳定性设置区分开。然而,我们发现它承认了合适的杨巴克斯特元素,我们表明的是同源稳定性论点的足够结构。
We give a new proof of homological stability with the best known isomorphism range for mapping class groups of surfaces with respect to genus. The proof uses the framework of Randal-Williams-Wahl and Krannich applied to disk stabilization in the category of bidecorated surfaces, using the Euler characteristic instead of the genus as a grading. The monoidal category of bidecorated surfaces does not admit a braiding, distinguishing it from previously known settings for homological stability. Nevertheless, we find that it admits a suitable Yang-Baxter element, which we show is sufficient structure for homological stability arguments.